[0001]
本发明属于材料领域,具体涉及一种不对称异靛蓝受体及聚合物及其制备方法与应用。
背景技术:[0002]
有机场效应晶体管(organic field-effect transistors,简称ofets)是一种电压控制器件,其通过栅极电压调控源-漏电极间电流大小。有机半导体层是ofet器件的核心组成部分。ofet半导体层可以选用有机共轭小分子或共轭聚合物。与无机场效应晶体管(半导体层是无机半导体,如单晶硅等)相比,有机场效应晶体管具有制备工艺简单、可溶液法打印加工和柔性好等优点。因此,ofet受到了人们的广泛关注,有望应用于各种显示装置以及存储器方面,例如电子商标、传感器、存储器、大规模集成电路和oled显示等。
[0003]
有机半导体材料按其载流子传输特性可分为p型,n型和双极性半导体材料,其载流子分别为空穴,电子,空穴和电子。研究表明,异靛蓝(isoindigo,简称iid)类材料体系的聚合物表现出优异的ofet性能。然而,iid类材料一般表现出p型性能,仅在少数情况下能表现出双极性性能。由于双极性材料在cmos(complementary metal-oxide-semiconductor)器件和发光场效应晶体管中有重要的应用前景,因此合成新的双极性材料非常重要。
技术实现要素:[0004]
本发明的目的是提供一种不对称异靛蓝受体及聚合物及其制备方法。
[0005]
本发明所提供的不对称异靛蓝的聚合物,其结构通式如式i所示:
[0006][0007]
上述式i中,r为碳原子总数为1-60的直链或支链烷基,具体可为碳原子总数为1-30、10-30、20-30的直链或支链烷基,更具体可为4-癸基十四烷基。
[0008]
ar基团选自如下基团中的任意一种:
[0009][0010]
所述ar基团中,均表示取代位;
[0011]
n为5-100,具体地n为5-50、5-25、5-15或5-10,更具体可为8。
[0012]
所述式i所示聚合物具体可为聚合物pitti-bt,其结构式如下:
[0013][0014]
其中,n=8。
[0015]
上述式i所示聚合物通过包括如下步骤的方法制备得到:
[0016]
将式iv所示化合物与双甲基锡化合物在催化剂和配体作用下进行聚合反应,得到所述式i所示聚合物;
[0017][0018]
上述式iv中,r的定义与式i中r的定义相同。
[0019]
上述方法中,双甲基锡化合物选自如下化合物中的任意一种:
[0020]
[0021][0022]
其中,me表示甲基;
[0023]
所述催化剂为钯催化剂,可选自四(三苯基膦)钯、二(三苯基膦)二氯化钯和三(二亚苄基丙酮)二钯中的至少一种;
[0024]
所述配体可选自三苯基膦、三(邻甲苯基)膦和三苯基胂中的至少一种。
[0025]
所述式iv所示化合物、双甲基锡化合物、催化剂和配体的投料摩尔份数比依次可为1.00:0.95~1.05:0.01~0.10:0.08~0.80份;
[0026]
具体地,所述式iv所示化合物、双甲基锡化合物、催化剂和配体投料摩尔用量比依次可为1.0:1.0:0.03:0.24;
[0027]
所述聚合反应的温度可为90~140℃,具体可为120℃;
[0028]
所述聚合反应的时间可为2小时~80小时;具体可为48小时;
[0029]
所述聚合反应在惰性气体保护下进行,所述惰性气体具体可为氩气;
[0030]
所述聚合反应在有机溶剂中进行,所述有机溶剂可选自甲苯、氯苯和二甲苯中的至少一种,具体可为氯苯;
[0031]
所述方法还可包括如下提纯步骤:
[0032]
在所述聚合反应完毕后,将所得反应体系冷却后依次加入浓盐酸和甲醇,室温下搅拌过滤,将所得沉淀依次用甲醇、丙酮、正己烷抽提,抽提至无色后,除去小分子和催化剂,再用三氯甲烷抽提而得;其中,所述浓盐酸的浓度具体可为12m,甲醇和浓盐酸的体积比具体可为20:1。
[0033]
此外,所述起始原料式iv所示化合物也属于本发明的保护范围。
[0034][0035]
式iv中,r的定义与式i中r的定义相同。
[0036]
上述式iv所示化合物可通过包括如下步骤的方法制备得到:
[0037]
1)6-溴-7-氟-1-烷基吲哚-2,3-二酮与水合肼进行还原反应得到式ii所示6-溴-7-氟-1-烷基吲哚-2-酮;
[0038][0039]
式ii中,r的定义与式i中r的定义相同;
[0040]
2)6-溴-1-烷基-1h-吡咯[2,3-b]吡啶-2,3-二酮和2,5-双(三甲基锡)噻吩[3,2-b]噻吩在催化剂和配体的作用下进行偶联反应,得到式iii所示的化合物;
[0041][0042]
式iii中,r的定义与式i中r的定义相同;
[0043]
3)将步骤1)所得式ii所示的6-溴-7-氟-1-烷基吲哚-2-酮和步骤2)所得式iii所示化合物与对甲苯磺酸进行缩合反应,得到式iv所示的化合物;
[0044]
上述方法步骤1)中,6-溴-7-氟-1-烷基吲哚-2,3-二酮与所述水合肼的摩尔比可为1:20~300,优选1:180;
[0045]
所述还原反应的温度可为80~130℃,具体可为120℃,时间可为2~48小时,具体可为24h;
[0046]
所述还原反应在惰性气体保护下进行,所述惰性气体具体可为氩气。
[0047]
上述方法步骤2)中,2,5-双(三甲基锡)噻吩[3,2-b]噻吩与6-溴-1-烷基-1h-吡咯[2,3-b]吡啶-2,3-二酮的摩尔比可为1:1.8~3,具体可为1:2.4;
[0048]
2,5-双(三甲基锡)噻吩[3,2-b]噻吩与所述催化剂的摩尔比可为1:0.01~0.20,具体可为1:0.1;
[0049]
2,5-双(三甲基锡)噻吩[3,2-b]噻吩与所述配体的摩尔比可为1:0.08~1.60,具体可为1:0.8;
[0050]
所述催化剂具体可为三(二亚苄基丙酮)二钯;
[0051]
所述配体具体可为三(邻甲苯基)膦;
[0052]
所述偶联反应的温度可为90~140℃,具体可为110℃,时间可为2小时~80小时,具体可为24h;
[0053]
所述偶联反应在惰性气体保护下进行,所述惰性气体具体可为氩气。
[0054]
上述方法步骤3)中,6-溴-7-氟-1-烷基吲哚-2-酮与式iii所示化合物与对甲苯磺酸的摩尔比可为2.0~4.0:1:0.01~0.4,优选3:1:0.27;
[0055]
所述缩合反应的温度可为80~140℃,具体可为120℃,时间可为2~60小时,具体可为48h;
[0056]
所述缩合反应在惰性气体保护下进行,所述惰性气体具体可为氩气。
[0057]
上述步骤1)至步骤3)所述反应均在有机溶剂中进行。
[0058]
所述步骤1)中,所述溶剂具体可为1,4-二氧六环;
[0059]
所述步骤2)中,所述溶剂具体可选自甲苯、氯苯和二甲苯中的至少一种,具体可为甲苯;
[0060]
所述步骤3)中,所述溶剂为醋酸和氯苯的混合溶剂,其中,醋酸与氯苯的体积比可为1:1。
[0061]
上述方法的合成路线如图5所示。
[0062]
本发明所提供的式i所示化合物在如下1)、2)中的应用也属于本发明的保护范围:
[0063]
1)双极性材料的制备;
[0064]
2)有机场效应晶体管的制备。
[0065]
具体地,所述有机场效应晶体管为双极性有机场效应晶体管。
[0066]
本发明还提供一种含有式i所示聚合物的双极性材料。
[0067]
本发明还提供过一种含有式i所示聚合物的有机场效应晶体管,
[0068]
所述有机场效应晶体管中,构成半导体层的材料含式i所示聚合物;
[0069]
所述有机场效应晶体管具体可为双极性ofets。
[0070]
本发明的优点在于:
[0071]
1、原料为商业化产品,合成路线简单,产率高,还可以推广到各种直链或支链类聚合物的合成;
[0072]
2、不对称异靛蓝类聚合物平面性较好,homo能级和lumo能级适中,可用于双极性场效应晶体管中;
[0073]
3.以本发明不对称异靛蓝聚合物为半导体层制备的有机场效应晶体管有较高的迁移率(空穴迁移率最高为1.18cm2v-1
s-1
;电子迁移率最高为1.20cm2v-1
s-1
),在双极性ofets中有良好的应用前景。
[0074]
本发明提供了不对称异靛蓝受体及聚合物的制备方法,并研究了其在有机场效应晶体管中的应用。该类聚合物具有合适的homo能级和lumo能级,测试结果表明该类聚合物表现出优异的双极性传输特性。
附图说明
[0075]
图1为本发明提供的不对称异靛蓝聚合物的紫外可见吸收光谱图。
[0076]
图2为以本发明提供的不对称异靛蓝聚合物的循环伏安曲线图。
[0077]
图3为以本发明提供的不对称异靛蓝聚合物场效应晶体管的结构示意图。
[0078]
图4为以本发明提供的不对称异靛蓝聚合物为半导体层的聚合物场效应晶体管的输出特性曲线图和转移特性曲线图。
[0079]
图5为本发明提供的制备式iv所示化合物的合成路线。
具体实施方式
[0080]
下面通过具体实施例对本发明进行说明,但本发明并不局限于此。
[0081]
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
[0082]
实施例1、聚合物pitti-bt的制备
[0083]
1)6-溴-7-氟-1-(4-癸基十四烷基)吲哚-2-酮的制备
[0084]
向250ml二口瓶中加入6-溴-7-氟-1-(4-癸基十四烷基)吲哚-2,3-二酮(4.00g,6.88mmol),40ml 80%水合肼,60ml1,4-二氧六环,通氩气保护。120℃下反应24h。用水和二氯甲烷萃取,干燥。溶液旋干后过柱(洗脱剂为石油醚:二氯甲烷=3:1),得到液体2.8g。产率:71.9%。
[0085]
结构表征数据如下:
[0086]
质谱:hr-maldi-tof:[m+na]
+
calcd forc
32
h
53
brfnnao:588.31926,found:588.31881。
[0087]
核磁氢谱和碳谱:1h nmr(400mhz,cdcl3)δ7.18(m,1h),6.90(d,j=8.0hz,1h),3.80(t,j=7.6hz,2h),3.50(s,2h),1.64(m,2h),1.32
–
1.02(m,39h),0.88(m,6h).
13
c nmr(100mhz,cdcl3)δ174.02,145.52
–
142.28(d),132.53
–
132.40(d),126.51
–
126.46(d),126.06,120.98
–
120.93(d),109.38
–
109.12(d),42.41
–
42.35(d),37.08,35.77,33.51,31.95,30.41,30.11,29.72,29.67,29.38,26.63,26.20,26.17,22.71,14.13.
[0088]
2)6,6'-(噻吩[3,2-b]噻吩-2,5-二基)双(1-(4-癸基十四烷基)-1h-吡咯[2,3-b]吡啶-2,3-二酮)
[0089]
向100ml二口瓶中加入6-溴-1-(4-癸基十四烷基)-1h-吡咯[2,3-b]吡啶-2,3-二酮(1.7g,3.02mmol),2,5-双(三甲基锡)噻吩[3,2-b]噻吩(0.586g,1.26mmol),三(二亚苄基丙酮)二钯(115.1mg,0.126mmol)和三(邻甲苯基)膦(304.4mg,1.0mmol),通氩气保护。接着加入20ml超声过的甲苯,混合液在110度下反应24h。冷却至室温,加入水和二氯甲烷萃取,干燥。溶液旋干后过柱(洗脱剂为石油醚:二氯甲烷=1:1),得到固体1.2g。产率:86.3%。
[0090]
结构表征数据如下:
[0091]
质谱:hr-maldi-tof:[m+h]
+
calcd for c
68
h
105
n4o4s2:1105.75773,found:1105.75792.
[0092]
核磁氢谱和碳谱:1h nmr(300mhz,cdcl3)δ7.97(s,2h),7.85(d,j=7.8hz,2h),7.43(d,j=7.8hz,2h),3.90(t,j=6.9hz,4h),1.82(m,4h),1.22(m,78h),0.85(m,12h).
13
c nmr(75mhz,cdcl3)δ180.6,164.3,158.9,157.6,148.2,144.1,133.3,120.2,113.8,110.4,39.9,37.0,33.5,31.9,30.7,30.2,29.8,29.7,29.4,26.7,24.5,22.7,14.1.
[0093]
3)itti-2br
[0094]
向100ml二口瓶中加入6-溴-7-氟-1-(4-癸基十四烷基)吲哚-2-酮(0.92g,1.63mmol),6,6'-(噻吩[3,2-b]噻吩-2,5-二基)双(1-(4-癸基十四烷基)-1h-吡咯[2,3-b]吡啶-2,3-二酮)(0.6g,0.54mmol),对甲苯磺酸(28mg),30ml醋酸和30ml氯苯混合溶液,通氩气保护。120℃下反应48h。用水和二氯甲烷萃取,无水硫酸钠干燥。将溶液旋干后过柱(洗脱剂为石油醚:二氯甲烷=2:1),得到固体0.70g。产率:58.8%。
[0095]
结构表征数据如下:
[0096]
质谱:hr-maldi-tof:[m+h]
+
calcd forc
132
h
207
br2f2n6o4s2:2203.39682,found:2203.39987。
[0097]
核磁氢谱和碳谱:1h nmr(300mhz,cdcl3)δ9.25(d,j=8.1hz,2h),8.94(d,j=8.7hz,2h),7.54(s,2h),7.07(m,4h),3.88(m,8h),1.81(m,4h),1.65(m,4h),1.30
–
1.00(m,
156h),0.85(m,24h).
13
c nmr(75mhz,cdcl3)δ167.3,167.0,156.9,151.5,148.0,144.6,142.8,141.4,137.1,131.9,131.8,131.1,129.9,126.5,125.1,122.9,118.1,114.3,114.1,114.0,111.9,42.7,39.9,37.3,33.7,33.6,32.0,32.0,31.1,30.8,30.4,30.3,30.0,29.9,29.8,29.8,29.5,29.4,26.8,26.7,26.3,24.8,22.8,14.2.
[0098]
4)聚合物pitti-bt
[0099]
将itti-2br(100.0mg,0.0454mmol)、5,5
’-
双(三甲基锡)-2,2
’-
联二噻吩(22.3mg,0.0454mmol)、催化剂三(二亚苄基丙酮)二钯(1.3mg)、配体三(邻甲苯基)膦(3.5mg)和氯苯(4ml)加入到反应瓶中,在氩气中进行三次冷冻-抽气-解冻循环除氧,然后将反应混合物加热到120℃进行聚合反应48h。冷却后,加入5ml 12mol/l浓盐酸,100ml甲醇,室温下搅拌3h,过滤。得到的沉淀物装入索氏提取器抽提。先用甲醇、丙酮、正己烷抽提至无色,除去小分子和催化剂,再用三氯甲烷抽提得到最终产物95mg,产率94.8%。
[0100]
结构表征数据如下:
[0101]
分子量:gpc:m
n
=18.3kda,pdi=3.80,n=8。
[0102]
由上可知,该化合物结构正确,为式i所示化合物pitti-bt,结构式如下所示:
[0103][0104]
实施例2、聚合物pitti-bt的光谱性能、电化学性能和场效应晶体管性能
[0105]
1)聚合物pitti-bt的光谱和电化学性能
[0106]
图1为聚合物在溶液和薄膜中的紫外可见吸收光谱。(圆形点所在的线表示溶液,正方形点所在的线表示薄膜)由图1可知,聚合物pitti-bt薄膜的光学带隙分别为1.52ev(光学带隙根据公式e
g
=1240/λ计算,其中e
g
为光学带隙,λ为紫外吸收曲线的边界值)。由图1可知,该聚合物分子内电荷转移峰较强,表明该聚合物分子间作用力较强。
[0107]
图2为聚合物薄膜的循环伏安曲线。测定在chi660c电化学工作站进行,用传统的三电极结构测试,铂为工作电极,铂丝为对电极,银/氯化银为参比电极,四丁基六氟磷酸铵作为支持电解质。测试在乙腈溶液中进行。循环伏安的条件为:扫描范围为-1.6~1.6伏特(vs.ag/agcl),扫描速率为50毫伏每秒。该聚合物具有氧化峰和还原峰,可作为有机半导体材料。根据循环伏安曲线,聚合物pitti-bt的homo能级和lumo能级分别为
–
5.68ev和
–
3.61ev。聚合物具有合适的homo能级和lumo能级,因而可用作双极性材料。
[0108]
2)聚合物pitti-bt的场效应晶体管性能
[0109]
图3为有机场效应晶体管的结构示意图,如图所示,采用已经通过光刻技术图案化源漏电极(金,25nm)的玻璃片作为衬底,沟道的宽/长=1400μm/40μm,在二次水、乙醇、丙酮中超声清洗后于用氮气枪吹干。实施例1所得的聚合物为半导体层,将其浓度为10mg/ml的邻二氯苯溶液中通过匀胶的方法形成有源层,厚度为20nm,并在160℃热台上退火10分钟。
[0110]
随后在实施例1所得的聚合物薄膜表面通过匀胶形成900纳米厚的聚甲基丙烯酸甲酯作为场效应管绝缘层,90℃除溶剂60分钟;在绝缘层上通过掩膜版热蒸镀90nm厚铝作为栅电极,完成场效应管制备。
[0111]
在室温下用通过keithley 4200scs半导体测试仪测量了所制备的场效应器件的电学性能。决定ofet的性能的两个关键参数是:载流子的迁移率(μ)和器件的开关比(i
on
/i
off
)。迁移率是指在单位电场作用下,载流子的平均漂移速度(单位是cm
2 v-1
s-1
),它反映了在电场下空穴或电子在半导体中的迁移能力。开关比定义为:晶体管在“开”状态和“关”状态下的电流之比,它反映了器件开关性能的优劣。对于一个高性能的场效应晶体管,其迁移率和开关比应尽可能的高。
[0112]
图4为基于pitti-bt聚合物所制备的场效应晶体管的转移特性曲线和输出特性曲线。该聚合物场效应晶体管显示出了明显的双极性传输特性,说明该聚合物是一类双极性材料。
[0113]
载流子迁移率可由方程计算得出:
[0114]
i
ds
=(w/2l)c
i
μ(v
g
–
v
t
)2(饱和区)
[0115]
其中,i
ds
为漏极电流,μ为载流子迁移率,v
g
为栅极电压,v
t
为阈值电压,w为沟道宽度,l为沟道长度,c
i
为绝缘体电容。利用(i
ds
,sat)
1/2
对v
g
作图,并作线性回归,可由此回归线的斜率推算出载流子迁移率(μ),由回归线与x轴的截点求得v
t
。
[0116]
迁移率可以根据公式从转移曲线的斜率计算得出,上述各例中制备的聚合物场效应晶体管的器件性能如表1所示。开关比可由图4侧源漏电流的最大值与最小值之比得出。
[0117]
表1、聚合物场效应晶体管的器件性能
[0118][0119]
实验结果表明,以本发明提供的pitti-bt聚合物为有机半导体层制备的有机场效应晶体管的空穴迁移率最高为1.18cm2v-1
s-1
,电子迁移率最高为1.20cm2v-1
s-1
。可见,本发明提供的pitti-bt聚合物是一类优异的新型的双极性材料。本发明给出的合成方法简单、有效,对于合成新的双极性材料有较大的指导意义。