本发明属于导电发热材料领域,具体涉及一种具有显著ptc特性的水性石墨烯浆料。
背景技术:
低温电热膜是一种在通电后可以将电能高效的转化为热能的薄膜材料,其热量主要以辐射的形式传入周围空间,综合效果要优于传统的对流供暖方式。基于石墨烯浆料成膜获得的电热膜因具有升温快、柔性好等优势,已广泛应用于电加热领域。
目前市场上的石墨烯发热膜产品主要是通过控温器来实现对发热膜工作温度的控制,这种方式存在控温成本高、控温效果不佳等缺点。且若测温探头出现故障会使控温系统失去作用,容易导致产品烧毁,甚至引起更严重的安全事故。
ptc特性是指:在正常温度下,材料或器件的电阻值正常,且随着温度的升高,电阻无明显变化;但当温度上升到一定温度(居里温度)时,电阻值会呈现阶跃性的增高,从而限制了大电流,降低功率,起到保护电路的作用。
因此,若能使石墨烯发热膜表现出ptc特性,将可实现石墨烯发热膜的自控温,从而避免控温系统的使用,提高安全性。
技术实现要素:
为了避免上述现有技术所存在的不足之处,本发明提供了一种具有ptc特性的水性石墨烯浆料,以期可以实现石墨烯电热膜的自控温。
为了实现上述目的,本发明采用如下技术方案:
本发明公开了一种具有ptc特性的水性石墨烯浆料,是在水性石墨烯浆料中加入有ptc特性材料,其各原料按质量百分比的构成为:
优选的,所述导电炭黑为导电槽黑、炉法炭黑和乙炔炭黑中的至少一种。
优选的,所述石墨烯类材料为石墨烯、氧化石墨烯和氨基化石墨烯中的至少一种。
优选的,所述特种碳材料为碳纳米管、碳纤维和石墨炔中的至少一种。
优选的,所述树脂为丙烯酸树脂、聚氨酯树脂、环氧树脂和聚酯树脂中的至少一种。
优选的,所述助剂包括分散剂、润湿剂、流平剂和成膜助剂中的至少两种。
优选的,所述ptc特性材料为低熔点高分子材料和弹性高分子聚合物按质量比0.2~5:1的混合物。前者为聚乙烯、聚丙烯和聚酯等低熔点高分子材料中的至少一种,具有熔点低的特点,当接近熔点时材料具有流动性,能为弹性高分子的形变提供更大的空间。后者是具有热膨胀特性的弹性高分子聚合物(如聚氯乙烯、聚酰胺和聚甲基丙烯酸甲酯中的一种或复配物),弹性高分子聚合物不仅有很高的受热体积膨胀特性,其另一个必要特性是具有稳定的体积膨胀或收缩比例,有着稳定的弹性性能。当温度升高时,包覆于碳材料周围的ptc弹性高分子受热体积快速膨胀,通过增加膜材内部导电材料的距离快速并大幅度的提高发热膜材的电阻率,并在达到一定的膨胀体积比后保持稳定;当温度下降后该ptc弹性高分子能够快速恢复到膨胀前的体积,并且体积变化率小于10%。
配制时,将各原料在分散缸中搅拌均匀,然后导入砂磨机充分研磨至所需细度,即获得具有ptc特性的水性石墨烯浆料。使用时,将其涂布成所需厚度的膜,即可作为电热膜材。
与现有技术相比,本发明具有以下有益效果:
1、本发明通过调节配方体系,在水性石墨烯浆料中加入一定比例的ptc特性材料,使其具有良好的ptc特性,以其制作的发热膜材可以实现自控温功能,且具有温度控制均匀、稳定的优点,避免了传统温度控制装置容易引发安全事故的困扰。
2、传统电发热产品在发热膜材上还需要连接温控器、测温探头等部件,不利于缩小产品体积,限制了产品的开发空间。本发明将ptc特性融合进发热膜材本身,可以避免使用常规温控部件,提高了产品的易用性和开发空间。
3、本发明具有ptc特性的水性石墨烯浆料具有如下优势:
(1)本发明具有ptc特性的发热浆料配方是水性体系,具有对环境友好、无污染、加工安全性高的优势。
(2)本发明的发热浆料具有较高的ptc特性,作为发热膜材使用时:当发热膜材的温度达到临界值时,包裹在碳材料周围的ptc特性材料受热体积膨胀,会使膜材的电阻快速升高至初始电阻的5倍左右;当发热膜材的温度下降后,该类ptc特性材料能够恢复到初始体积,具有优秀的温变体积弹性性能。
(3)传统发热产品是通过在膜材的几个位置设置测温探头来探测膜材的温度,不能完全反映整张发热膜材的实际温度和均匀性,如果测温探头发生故障就会干扰温控器正确工作,容易引发事故。以本发明的发热浆料制作的发热膜材具有整张膜材温度可控的优点,不会因为部分区域损坏而导致整个膜材加热失控,安全性极高。
附图说明
图1为实施例1~实施例5与对比例1~对比例2的ptc性能对比。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
下列实施例中所用原料信息如下:
导电炭黑:安徽黑钰颜料新材料有限公司,导电炭黑ct-8,比表面积305m2/g,粒径21nm。
石墨烯:合肥微晶材料科技有限公司,wjsg1410,比表面积100-150m2/g,平均粒径3-25μm。
碳纤维粉:天津晶林新材料科技有限公司,ecc-n,比表面积220~280m2/g,外径7~15nm,长度5~15μm。
高浓度羧基化多壁碳纳米管分散液:先丰纳米,xfm33,有效含量~13%,直径>50nm,长度<10μm。
石墨炔粉末:先丰纳米,xfy01,结构类型:石墨双炔。
树脂:万华,lacper4210。
分散剂:byk-192。
润湿剂:金团化学,kepersurf-125。
流平剂:金团化学,kepersurf-193。
成膜助剂:dpm(二丙二醇甲醚),阿拉丁,>98%。
ptc特性材料:pe(胜浩橡塑pe-14l)与pvc(中泰化学pvc-sg5)按质量比3:1的混合物。
实施例1
本实施例具有ptc特性的水性石墨烯浆料,其各原料按质量百分比的构成为:
具体配制方法为:
依次将水、分散剂、润湿剂和流平剂加入分散缸中搅拌均匀,然后将树脂和ptc材料加入上述溶液中,最后加入导电炭黑和石墨烯高速搅拌分散均匀。上述浆料搅拌均匀后导入砂磨机研磨1h,得到具有较强ptc特性的水性石墨烯浆料。
实施例2
本实施例具有ptc特性的水性石墨烯浆料,其各原料按质量百分比的构成为:
具体配制方法为:将水、树脂加入分散缸中搅拌均匀,再加入流平剂搅拌溶解得到分散液a。将分散剂和润湿剂加入水中搅拌均匀后,再加入导电炭黑、石墨烯和ptc特性材料充分搅拌均匀得到分散液b。将分散液b加入分散液a中搅拌混均后,导入砂磨机研磨1.5h,得到具有ptc特性的水性石墨烯浆料。
实施例3
本实施例具有ptc特性的水性石墨烯浆料,其各原料按质量百分比的构成为:
具体配制方法为:将水、树脂和ptc特性材料加入分散缸中搅拌均匀,再加入分散剂、润湿剂、流平剂和成膜助剂搅拌溶解,最后加入碳纤维粉、导电炭黑和石墨烯高速搅拌分散均匀。上述浆料搅拌均匀后导入砂磨机研磨2h,得到具有ptc特性的水性石墨烯浆料。
实施例4
本实施例具有ptc特性的水性石墨烯浆料,其各原料按质量百分比的构成为:
具体配制方法为:将水、树脂和ptc特性材料加入分散缸中搅拌均匀,再加入分散剂、润湿剂、流平剂和成膜助剂搅拌溶解,最后加入碳纳米管、导电炭黑和石墨烯高速搅拌分散均匀。上述浆料搅拌均匀后导入砂磨机研磨2h,得到具有ptc特性的水性石墨烯浆料。
实施例5
本实施例具有ptc特性的水性石墨烯浆料,其各原料按质量百分比的构成为:
具体配制方法为:将水、树脂和ptc特性材料加入分散缸中搅拌均匀,再加入分散剂、润湿剂、流平剂和成膜助剂搅拌溶解,最后加入石墨烯、导电炭黑和石墨炔高速搅拌分散均匀。上述浆料搅拌均匀后导入砂磨机研磨2h,得到具有ptc特性的水性石墨烯浆料。
对比例1
本对比例的各原料按质量百分比的构成为:
具体配制方法为:将有机溶剂丙二醇甲醚、树脂加入分散缸中搅拌均匀,再加入分散剂、润湿剂和流平剂搅拌溶解,最后加入导电炭黑和石墨烯高速搅拌分散均匀。上述浆料搅拌均匀后导入砂磨机研磨3h,得到普通发热碳浆。
对比例2
本对比例的各原料按质量百分比的构成为:
具体配制方法为:将有机溶剂乙酸乙酯、分散剂、润湿剂、流平剂、成膜助剂和树脂加入分散缸中搅拌均匀,再加入石墨烯、炭黑和石墨炔高速搅拌分散均匀。上述浆料搅拌均匀后导入砂磨机研磨2h,得到普通发热碳浆。
将上述各实施例与对比例所得浆料在pet上涂布成膜,然后测试其ptc强度。
ptc强度是样品在电阻率-温度关系曲线中的最大电阻率与其在室温时的电阻率比值的对数值。ptc强度测试方法如下:
1、将制备好的发热样品贴上电极并连接导线后放入电热恒温鼓风干燥箱中,两根电极导线连接烘箱外的万用表。
2、将烘箱进行升温,分别设定到30℃、50℃、70℃、90℃和110℃并保温5分钟后测试该温度下发热膜的电阻值。
3、δ=lg(rmax/r0)
(δ—ptc强度值;rmax—测试的电阻值;r0—材料室温下的电阻值)
4、根据ptc强度计算公式,得到30℃、50℃、70℃、90℃和110℃时发热膜的ptc强度值,并作出温度-ptc强度曲线。
实施例2~实施例5与对比例1~对比例2所得浆料的ptc性能对比如图1所示,可以看出:实施例1~实施例5的发热浆料在50℃~70℃有明显的电阻跃升,其中实施例1的电阻增加了约6倍,性能最为优异。而对比例1和对比例2随着温度的升高其电阻保持稳定,变化幅度微小。因此,本发明添加ptc特性材料的水性石墨烯浆料具有较高的ptc效应。
以上仅为本发明的示例性实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。