氰基芳烃类聚集发光材料的合成及其应用的制作方法

文档序号:23382718发布日期:2020-12-22 13:46阅读:165来源:国知局
氰基芳烃类聚集发光材料的合成及其应用的制作方法

本发明具体涉及氰基芳烃类聚集发光材料的合成及其应用,属于有机合成中有机电致发光技术领域。



背景技术:

有机发光二极管(oleds)由于其大尺寸、柔性、高效、超薄等优势使其在下一代平板显示和固体照明领域有着巨大的应用潜力。磷光材料由于存在重金属旋轨耦合而使其内量子效率几乎为100%,因此大多数基于oleds的发光材料均为磷光材料。然而商业化的磷光材料通常还有贵金属ir(iii)或pt(ii)从而导致材料价格昂贵。尤其是为了改善器件性能使其高浓度掺杂(5-20wt%)而加剧器件成本。纯有机热活延迟荧光材料由于能够通过热活化实现三线态到单线态激子的反向系间穿越而使得其内量子效率达到100%,从而既能够降低成本又能够实现器件高效发光。然而,磷光和热激活延迟荧光材料由于其较长的寿命而导致聚集猝灭、浓度猝灭、三线态湮灭和单线态-三线态湮灭等等,这极大的限制了它们迈上商业化。因此,急需开发能够缓解或抑制发光淬灭和激子湮灭的发光材料。

近来研究表明,适当降低分子间相互作用(如π-π作用)能够开发在薄膜状态下有效发光和具备优异热激活延迟荧光的材料。由于这种材料对浓度不敏感而可以实现非掺杂oleds或任意浓度掺杂的发光器件。具有扭曲结构的分子能够实现聚集诱导发光而避免浓度猝灭,从而实现材料高效发光。而聚集诱导发光材料通过恰当的分子间作用而具有热激活延迟荧光特性,进而有望改善器件发光效率。因此,设计合成具备热激活延迟荧光特性的聚集诱导发光材料能够使其在聚集状态下及微妙尺度内显示优异的发光特性和热激活延迟荧光特性,既可以通过热延迟荧光特性使得器件内量子效率达到100%,又因材料聚集诱导发光而避免浓度猝灭等问题。从而实现器件结构简化、降低成本、稳定高效发光的有机电致发光器件。

因此,探索原料廉价、合成条件简单、具有热激活延迟荧光特性的聚集诱导发光材料对于简化器件结构、降低器件成本和实现器件稳定高效发光具有重要意义。尽管目前基于聚集诱导发光特性的器件已经见诸报道,但是其形成的机制尚不明确。特别是设计合成具有热激活延迟荧光特性的聚集诱导发光材料存在巨大的挑战。为此,本申请通过设计合成腈基芳烃类杂化芳烃化合物,实现热激活延迟荧光材料聚集诱导发光,从而有望解决上述难题。



技术实现要素:

为了简化器件结构、降低器件成本、解决磷光和热激活延迟荧光材料寿命长而导致的浓度淬灭、激子湮灭等难题,设计合成具有热激活延迟荧光特性的聚集诱导发光材料,有望能够有效解决上述难题。本发明提供了一种氰基芳烃类聚集发光材料i;将各种芳环联结在腈基芳烃的相邻两侧,通过sp3杂化碳/氮原子相连,并利用芳基上取代基的结构、位置、以及y杂原子位置的不同来调控材料结构与性质,以其为客体制备相应的发光器件。

本发明所述的一种氰基芳烃类聚集发光材料,该材料是将各种芳环联结在腈基芳烃的相邻两侧,通过sp3杂化碳/氮原子相连,并利用芳基上取代基的结构、位置、以及y杂原子位置的不同来调控材料结构与性质,其具有如下结构:

其中,x选自c、o、s、二芳基碳、二烷基碳、芳基膦、c=o或c=s;y选自c或n;r1、r2、r3、r4、r5各自独立选自h、吸电子基或供电子基。其中,y选自n时,中心苯环上3、4、5位为氮原子,r1、r2、r3无取代基。

进一步地,在上述技术方案中,所述供电子基选自取代或未取代c1~30烷基、取代或未取代苯基以及芳基杂环化合物;芳香杂环化合物结构如下:

其中,x′为o或s;r1′、r2′、r3′为各自独立的氢、腈基、取代或未取代的c1~12烷基、环烷基、环烯基、炔基、巯基、烷巯基、芳硫醚基、杂环基、酯基、醛基、硝基、甲硅烷基、硅氧烷基、取代或未取代的c1~12烷氧基、取代或未取代的c6~12芳基、取代或未取代的c6~12芳氧基、与相邻取代基之间形成环形结构;所述式r-2、r-3、r-4、r-5、r-6、r-7、r-8、r-9、r-10、r-11、r-12或r-13基团中苯环上任意氢原子被取代或未被取代而形成的取代基。

单晶x-衍射、核磁共振(nmr)、色质联机(lc-ms)表征了复杂氰基芳烃类聚集发光材料的结构,通过热重分析和差热分析测试了材料的热稳定性,通过紫外荧光光谱以及循环伏安方法表征了其光和电化学性质。

本发明为上述结构氰基芳烃类聚集发光材料提供一种制备方法。

一种氰基芳烃类聚集发光材料i的制备方法,反应步骤采用反应方程式表示如下:

其中x′和x″为相同的或不同的卤素。如:氟、溴、碘;

一种氰基芳烃类聚集发光材料i的制备方法的制备方法,当x为co、r-p=s(r=r7和r8;其中,r7和r8为相同的芳基、烷基或环烷基等),反应步骤采用反应方程式表示如下:

一种氰基芳烃类聚集发光材料i的制备方法的制备方法,当x为s时;反应步骤采用反应方程式表示如下:

进一步地,在上述技术方案中,氰基芳烃类聚集发光材料i的制备方法中,反应温度均在0至120℃范围内;

进一步地,在上述技术方案中,所述材料3的制备过程中,碱性试剂为叔丁醇钾、叔丁醇钠、乙醇钠、乙醇钾、碳酸钾、二异丙基氨基锂、氢化钠、丁基锂等各种碱性试剂;铜催化剂或碘化亚铜、铜粉等各种铜催化剂;钯催化剂为醋酸钯、四三苯基膦钯、氯化钯等各种钯催化剂;材料4和5制备过程中,所用硫化试剂为硫酚、五硫化二磷、劳森试剂等;材料6制备过程中所用氧化剂为氧气、双氧水、过氧化物等氧化剂。

作为优选,上述化合物3、4、5和6具体制备方法操作如下:

a、取将含氟腈基芳烃1与杂环芳烃2放入三口烧瓶中,用有机溶剂(如:dmf、dmso、甲苯等)溶解并加入碱性试剂(如:乙醇钠、乙醇钾、叔丁醇钠、叔丁醇钾、lda、氢氧化钾、氢氧化钠、氢化钠、氢化钙等),在惰性气体保护下,在0至120℃)下搅拌溶解反应0.5-72小时。然后,自然降至温度,加水淬灭,利用二氯甲烷萃取,干燥,减压蒸馏,柱层析得化合物3。

b、将化合物3溶解到有机溶剂中(如:苯、甲苯、乙腈、二甲苯等)溶剂并加入硫化试剂(如:硫粉、五硫化二磷、劳森试剂),0至150℃反应2-120小时,然后冷却至室温,水洗,二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,减压抽滤浓缩,以乙酸乙酯和石油醚的混合物为洗脱剂,柱层析得高纯度化合物4或者5;

c、取化合物3溶解在醋酸中,将双氧水在室温下加入反应瓶中。然后加热反应0.5-120小时,冷却至室温,用二氯甲烷萃取,合并有机相,用无水硫酸镁干燥,减压抽滤浓缩,以乙酸乙酯和石油醚的混合物为洗脱剂,柱层析得高纯度化合物6;

本发明提供的第三个目的,提供了氰基芳烃类聚集发光材料在有机电致发光器件中的应用。

一种发光器件,包括阳极、阴极及设置于阳极和阴极之间至少一个有机层,所述有机层前述结构中所述氰基芳烃类聚集发光材料i。

通过循环伏安法对其homo和lumo能级进行了计算;对相关发光器件的性能进行了表征。结果表明,这类材料可以广泛应用于有机发光二极管、有机激光、有机电存储器件、有机场效应管等。

发明有益效果:

化合物1或2结构的材料具有以下特点:1)刚性平面结构,适当的分子间作用;2)大的π-共轭体系及高的发光效率;3)高的热分解温度和稳定的无定形态;保持了高热稳定性和玻璃化温度;4)适当的分子间相互作用;5)基于氰基芳烃的2,6-位嵌入杂化芳烃结构;6)具有合适的homo和lumo能级;7)其电致发光光谱相对光致发光光谱显著红移,具有良好的聚集发光的性能。

附图说明

图1为实施例1中化合物3a晶体结构图;

图2为实施例2中化合物3b晶体结构图;

图3为化合物3a和3buv和pl光谱图;

图4为化合物3a和3btga谱图;

图5为化合物3a和3bdsc图;

图6为化合物3a的循环伏安曲线图;

图7为化合物3b主体材料的(客体dmac-dps)电致发光光谱图;

图8为含有化合物3b主体材料时发光二极管器件结构示意图。

具体实施方式

下面结合实施例来进一步描述本发明的技术方案,但这些实施例并非限制本发明的实施方式。本发明具有多种不同的实施方式,并不只限于本说明书中所述内容。本领域的技术人员在不违背本申请发明精神的情况下,所完成的方案应在本发明的范围内。

实施例1:化合物3a的合成:

将2,6-二氟-苯腈1a(10.0mmol,1.39g)、吩噻嗪2a(10.0mmol,1.99g)及乙醇钠(30.0mmol,2.04g)溶解在dmf中,在70至150℃反应48小时,冷却到室温、水洗、二氯甲烷萃取、无水硫酸钠干燥,然后柱层析得到3a(4.72g,产率:95%);

化合物1a表征如下:1hnmr(600mhz,cdcl3):δ8.09(t,j=8.10hz,1h),7.80(d,j=7.80hz,2h),7.06(d,j=7.8hz,24h),6.90(m,8h),6.19(d,j=6.60hz,4h).

实施例2:化合物3b的合成:

将2,6-二氟-苯腈1a(10.0mmol,1.39g)、吩噁嗪2b(20.0mmol,3.66g)及乙醇钠(30.0mmol,2.04g)溶解在dmf中,在70至150℃反应48小时,冷却到室温、水洗、二氯甲烷萃取、无水硫酸钠干燥,然后柱层析得到3b(4.51g,产率:97%);

化合物1a表征如下:1hnmr(600mhz,cdcl3):δ8.07(d,t=7.80hz,1h),7.67(d,j=7.8hz,2h),6.75(m,8h),6.68(t,j=7.20hz,4h),5.90(d,j=8.40hz,4h);maldi-tof(ei):m/z=466.1566[m+].

实施例3:化合物3c的合成:

氮气保护下,将2,6-二溴-苯腈1a(10.0mmol,2.60g)、吖啶酮2c(10.0mmol,1.95g)、碳酸钾(20.0mmol,2.76g)、碘化亚铜(2.0mmol,0.38g)、2,2,6,6-四甲基-3,5-庚二酮(2.0mmol,0.37g)溶解在dmf中,在70至150℃反应48小时,冷却到室温、水洗、二氯甲烷萃取、无水硫酸钠干燥,然后柱层析得到3c(8.61g,产率:88%);

实施例4:化合物6a的合成:

氮气保护下,将化合物3a(3.0mmol,1.49g)溶解到四氢呋喃和二氯甲烷的混合溶剂中,并加入双氧水(15.0mmol,15.0g),室温下反应0.5-12小时,然后加热反应0.5-72小时。冷却到室温,水洗、二氯甲烷萃取、无水硫酸钠干燥、滤液蒸发浓缩,柱层析后得到化合物6a(1.63g,产率:97%);

实施例5:化合物4a的合成:

将化合物3c(10.0mmol,4.90g)溶于苯中,加入劳森试剂(10.0mmol,4.04g),在70至120℃反应5小时,冷却到室温,蒸发浓缩,柱层析得到产物4a,产率(4.32g,产率:83%)

实施例6:化合物3d的合成:

将2,6-二氟-苯腈1a(10.0mmol,1.39g)、10-苯基-5-氢-磷氧吖啶2b(20.0mmol,5.82g)及乙醇钠(30.0mmol,2.04g)溶解在dmf中,在70至150℃反应48小时,冷却到室温、水洗、二氯甲烷萃取、无水硫酸钠干燥,然后柱层析得到3d(6.20g,产率:91%);

实施例7:化合物5a的合成:

将3d(10.0mmol,6.82g)溶于苯中,加入劳森试剂(10.0mmol,4.04g)在70至120℃反应5小时,冷却到室温,蒸发浓缩,柱层析得到产物5a,产率(6.84g,产率:96%)

图3表明化合物3a和3b在二氯甲烷溶液的吸收光谱轮廓相似,但是由于3a用硫原子替代了3b中的氧原子,所以其吸收光谱发生了红移;其发射光谱轮廓相似,红移更加显著。表明通过简易结构变化可以获得不同光谱性质。图4表明3b(热分解温度:360℃)中氧原子被硫原子取代后产物3a(热分解温度:369℃)热稳定性得到明显提高,可见通过分子量的增加可适当改善材料热稳定性;二者均表现出稳定的无定形态。

图6为化合物3a的循环曲线图,起始氧化电位和还原电位分别为0.59和-2.15v,依据其实氧化还原电位计算可得其homo和lumo能级分别为-5.39和-2.65ev,这表明其具有良好的电子和空穴注入/传输性能。

图7中:moo3(6nm)/npb(70nm)/mcp(5nm)/dpepo:phcn-dpx(20nm,10%)/dpepo(5nm)/bphen(35nm)/lif(1nm)/al

采用3b为客体,bphen为电子传输层,dpepo为电子注入层和主体材料,mcp为空穴注入层,npb为空穴传输层,制备的发光器件,光谱不依耐电压变化,非常稳定。其中mcp、npb、dpepo和bphen结构式如下:

结果表明:在驱动电压增加得到情况下,其电致发光光谱几乎不变,这说明利用这类材料材料制备发光器件,其光谱非常稳定。

采用该类材料制备常用的发光器件结构,见图8所示。

综合以上数据,表明该类化合物可以有效应用在发光材料器件领域,并能取得良好效果。

以上实施例描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1