:
1.本发明涉及有机电致发光技术领域,具体涉及一种含有氘原子的有机电子材料及其应用。
背景技术::
2.伴随科技和经济的发展,人们对于生活质量的要求也在提高,新型的显示和照明技术不仅需要满足人眼对于色彩的要求,而且还要做到健康和环保。有机电致发光器件(oleds)作为一种新型的显示技术,每个像素切换自如,且主动发光,使得显示响应时间短,色彩对比度高;驱动电压低可减少能耗;有机材料的使用使得器件更加轻薄,环保;而基板的多元化选择为柔性和透明显示提供可能,广泛应用在手机、平板显示器、电视、照明和车载显示等领域。
3.一般的有机电致发光器件采用夹层式三明治结构,即有机层夹在两侧阳极和阴极之间,有机层按照各种材料不同的光电特性分为空穴传输层、电子传输层、发光层、空穴阻挡层和电子阻挡层等。器件的发光机理主要为:在外界电压驱动下,空穴和电子克服能垒,分别由阳极和阴极注入到空穴传输层和电子传输层,然后在发光层中复合并释放能量,并把能量传递给有机发光物质。发光物质得到能量,并使其从基态跃迁到激发态,当受激发分子重新跃迁到基态,就产生了发光现象。
4.电子传输材料就是把阴极上的电子传输到发光层的材料,是有机电致发光器件的重要组成部分,有利于降低电子的注入能垒,还可避免阴极与发光层接触,导致发光猝灭。电子传输材料一般要求较好的热稳定性和成膜性,较高的电子迁移率、较大的电子亲和能和较高的激发态能级。
5.由于大多有机电致发光材料传输空穴的速度要比传输电子的速度快。这就使得电子和空穴在发光层中的数量不平衡,导致器件发光时远离发光层,接近电极,这样就需要较高的驱动电压,也降低了器件的效率和器件的使用寿命。最近的有机电致发光器件尽管已经得到逐渐改良,但仍要求在发光效率,驱动电压,寿命等方面更为优异的材。因此,需要开发具有良好热稳定性和性能优良的电子传输材料。
6.氘代化合物应用在有机电致发光材料和有机电致发光器件上,可以有效改善器件的效率和提高寿命,比如专利us8557400,wo2006095951。这是因为氘是氢的同位素,氘的原子量是氢的2倍,这导致氘更低的振动能级,使得c
‑
d键比c
‑
h键更短,键能更长,伸缩振动更小。
技术实现要素::
7.本发明的目的在于提供一种含有氘原子的有机电子材料及其应用。为了克服上述问题,本发明在蒽的主体结构上引入三嗪基和氘代芳基,增强材料电负性,提高化合物的电子传输性能,并提高化合物的热稳性。本发明提供了具有高热稳定性和成膜性,及具有强电子迁移率的有机电致发光化合物。该有机电子材料制作的有机电致发光器件具有优异的发
光效率,器件寿命更长。
8.本发明一方面提供了一种含有氘原子的有机电子材料,所述的有机电子材料含有如下结构式(i)的化合物:
[0009][0010]
其中,ar1,ar2,ar3独立地选自苯基,1
‑
萘基,2
‑
萘基,联苯基,菲基,9,9
‑
二甲基芴基,9,9
‑
二苯基芴基,9,9
‑
螺芴基,苯并菲基,吡啶基,氰基苯基,二苯并呋喃基或二苯并噻吩基,且ar1,ar2,ar3中至少有一个含有氘原子;
[0011]
r1‑
r8独立地选自氢,氘,甲基,三氘代甲基,三氟甲基,乙基,丙基,异丙基,丁基,叔丁基,异丁基,氰基,氯,氟或溴。
[0012]
优选地,所述的含有氘原子的有机电子材料包括并不限于如下化合物1
‑
58中的任意一种。
[0013]
[0014]
[0015]
[0016]
[0017]
[0018]
[0019]
[0020][0021]
本发明另一方面提供了一种有机电致发光器件,所述的有机电致发光器件包括阳极、阴极和有机层;
[0022]
所述的有机层包含发光层、空穴注入层、空穴传输层、空穴阻挡层、电子注入层或电子传输层中的一层或一层以上;
[0023]
所述的有机层中至少有一层含有上述的有机电子材料。
[0024]
优选地,所述的有机层中发光层含有上述的有机电子材料。
[0025]
优选地,所述的有机层中电子传输层或者电子注入层含有上述的有机电子材料。
[0026]
优选地,所述的有机层中空穴阻挡层含有上述的有机电子材料。
[0027]
本发明作为电子传输材料时,可以掺杂有机金属络合物,比如8
‑
羟基喹啉锂,其中金属络合物的掺杂质量含量为20
‑
70%。
[0028]
所述的有机层的总厚度为1
‑
1000nm;进一步优选地,所述的有机层的总厚度为50
‑
500nm。
[0029]
本发明的有机电致发光器件在使用本发明具有结构式i的化合物时,可以使用搭配其他材料,如空穴注入层、空穴传输层、发光层、电子传输层、电子注入层和阻挡层等,而获得蓝光、绿光、黄光、红光或者白光。
[0030]
本发明的有机电致发光器件中有机层的每一层,可以通过真空蒸镀法、分子束蒸镀法、溶于溶剂的浸涂法、旋涂法、棒涂法或者喷墨打印等方式制备。对于金属电极可以使用蒸镀法或者溅射法进行制备。
[0031]
本发明另一方面还提供了上述的有机电子材料的应用,所述的有机电子材料可用于生产有机电致发光器件、有机太阳能电池、有机薄膜晶体管、有机光检测器、有机场效应晶体管、有机集成电路和有机光感受器等。
[0032]
本发明的有益效果:
[0033]
本发明提供了一种含有氘原子的有机电子材料及其应用,本发明提供的有机电子传输材料,具有高热稳定性和成膜性,高发光效率,高发光纯度。采用该有机电子材料制作的有机电致发光器件能够降低驱动电压、提高发光效率、色纯度优异、器件寿命更长。
附图说明:
[0034]
图1为化合物6的氢核磁谱图。
[0035]
图2为本发明的一种有机电致发光器件结构示意图。
[0036]
其中,110代表为玻璃基板,120代表为阳极,130代表为空穴注入层,140空穴传输层,150代表为阻挡层,160代表为发光层,170代表为电子传输层,180代表为电子注入层,190代表为阴极。
[0037]
图3为器件的电流密度与发光亮度关系图。
[0038]
图4为器件的电流密度与电流效率关系图。
[0039]
图5为器件的电流密度与功率效率关系图。
[0040]
图6为电流密度与外量子效率关系图。
[0041]
图7为实施例7和比较例1在50ma/cm2的电流密度下的亮度衰减变化图。
具体实施方式
[0042]
下面,结合附图以及具体实施方式,对本发明做进一步描述,但下述实施例仅为本发明的优选实施例,并非全部。基于实施方式中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得其它实施例,都属于本发明的保护范围。
[0043]
实施例1
[0044]
一种含有氘原子的有机电子材料,所述的有机电子材料中含有化合物1,化合物1的合成路线如下:
[0045][0046]
化合物1的合成:
[0047]
在反应瓶中,加入9
‑
溴
‑
10
‑
(氘代苯基)
‑
蒽(3.4g,10mmol),2,4
‑
二苯基
‑6‑
[3
‑
(4,4,5,5
‑
四甲基
‑
1,3,2
‑
二氧杂环戊硼烷
‑2‑
基)苯基]
‑
1,3,5
‑
三嗪(4.4g,10mmol),碳酸钾(2.7g,20mmol),甲苯(50ml),乙醇(20ml),水(20ml),四三苯基膦钯(0.1g),氮气保护下,加热回流5小时,冷却,加入甲苯(300ml),分液,有机相干燥,浓缩,固体用甲苯重结晶,得到固体4.7g,产率83%。1hnmr(400mhz,cdcl3,δ):9.02
‑
9.04(d,1h),8.93(s,1h),8.77
‑
8.79(m,4h),7.76
‑
7.80(m,5h),7.55
‑
7.62(m,7h),7.38
‑
7.40(m,4h)。元素分析:c
41
h
22
d5n3,c,86.91;h,5.67;n,7.42;ms(esi,m/z):[m+h]
+
:567.27。
[0048]
实施例2
[0049]
一种含有氘原子的有机电子材料,所述的有机电子材料中含有化合物6,化合物6的合成路线如下:
[0050][0051]
化合物6的合成:
[0052]
在反应瓶中,加入9
‑
溴
‑
10
‑
(氘代苯基)
‑
蒽(3.4g,10mmol),2,4
‑
二苯基
‑6‑
[4
‑
(4,4,5,5
‑
四甲基
‑
1,3,2
‑
二氧杂环戊硼烷
‑2‑
基)苯基]
‑
1,3,5
‑
三嗪(4.4g,10mmol),碳酸钾(2.7g,20mmol),甲苯(50ml),乙醇(20ml),水(20ml),四三苯基膦钯(0.1g),氮气保护下,加热回流5小时,冷却,加入甲苯(300ml),分液,有机相干燥,浓缩,固体用甲苯重结晶,得到固体5.1g,产率91%。元素分析:c
41
h
22
d5n3,c,86.88;h,5.70;n,7.42;ms(esi,m/z):[m+h]
+
:567.24。氢核磁谱图如图1。
[0053]
实施例3
[0054]
一种含有氘原子的有机电子材料,所述的有机电子材料中含有化合物17,化合物17的合成路线如下:
[0055][0056]
中间体17
‑
1的合成:
[0057]
在反应瓶中,加入2
‑
氯
‑4‑
(3
‑
氯苯基)
‑6‑
苯基
‑
1,3,5
‑
三嗪(3g,10mmol),5
‑
氘代苯硼酸(1.3g,10mmol),碳酸钾(2.7g,20mmol),甲苯(30ml),四氢呋喃(10ml),水(10ml),四三苯基膦钯(0.1g),氮气保护下,加热回流5小时,冷却,加入甲苯(100ml),分液,有机相干燥,浓缩,固体用乙醇重结晶,得到固体3.1g,产率90%。ms(esi,m/z):[m+h]
+
:348.15。
[0058]
化合物17的合成:
[0059]
在反应瓶中,加入中间体17
‑
1(2g,5.7mmol),9
‑
(2
‑
萘基)
‑
10
‑
蒽硼酸(2.2g,6.3mmol),碳酸钾(1.4g,10mmol),甲苯(30ml),乙醇(10ml),水(10ml),四三苯基膦钯(0.1g),氮气保护下,加热回流10小时,冷却,加入甲苯(200ml),分液,有机相干燥,浓缩,固体用甲苯重结晶,得到固体2.6g,产率74%。元素分析:c
45
h
24
d5n3,c,87.62;h,5.54;n,6.84,ms(esi,m/z):[m+h]
+
:617.29。
[0060]
实施例4
[0061]
一种含有氘原子的有机电子材料,所述的有机电子材料中含有化合物21,化合物21的合成路线如下:
[0062][0063]
化合物21的合成:
[0064]
在反应瓶中,加入9
‑
溴
‑
10
‑
(氘代苯基)
‑
蒽(1.5g,4.5mmol),2
‑
(2
‑
萘基)
‑4‑
苯基
‑6‑
[3
‑
(4,4,5,5
‑
四甲基
‑
1,3,2
‑
二氧杂环戊硼烷
‑2‑
基)苯基]
‑
1,3,5
‑
三嗪(2.2g,4.5mmol),碳酸钾(1.4g,10mmol),甲苯(30ml),乙醇(10ml),水(10ml),四三苯基膦钯(0.1g),氮气保护下,加热回流5小时,冷却,加入甲苯(300ml),分液,有机相干燥,浓缩,固体用甲苯重结晶,得到固体1.9g,产率69%。元素分析:c
45
h
24
d5n3,c,87.62;h,5.54;n,6.84,
ms(esi,m/z):[m+h]
+
:617.30。
[0065]
实施例5
[0066]
一种含有氘原子的有机电子材料,所述的有机电子材料中含有化合物27,化合物27的合成路线如下:
[0067][0068]
化合物27的合成:
[0069]
合成方法和化合物1的合成方法的区别仅在于,用原料2
‑
(4
‑
联苯基)
‑4‑
苯基
‑6‑
[4
‑
(4,4,5,5
‑
四甲基
‑
1,3,2
‑
二氧杂环戊硼烷
‑2‑
基)苯基]
‑
1,3,5
‑
三嗪代替2,,4
‑
二苯基
‑6‑
[3
‑
(4,4,5,5
‑
四甲基
‑
1,3,2
‑
二氧杂环戊硼烷
‑2‑
基)苯基]
‑
1,3,5
‑
三嗪,产率75%。元素分析:c
47
h
26
d5n3,c,87.79;h,5.63;n,6.58,ms(esi,m/z):[m+h]
+
:643.33.
[0070]
实施例6
[0071]
一种含有氘原子的有机电子材料,所述的有机电子材料中含有化合物41,化合物41的合成路线如下:
[0072][0073]
中间体41
‑
1的合成
[0074]
在反应瓶中,加入2,4
‑
二氯
‑6‑
(3
‑
氯苯基)
‑
1,3,5
‑
三嗪(1g,3.9mmol),5
‑
氘代苯硼酸(1g,8.1mmol),碳酸钾(2.7g,20mmol),甲苯(30ml),四氢呋喃(10ml),水(10ml),四三苯基膦钯(0.05g),氮气保护下,加热回流5小时,冷却,加入甲苯(100ml),分液,有机相干燥,浓缩,固体用乙醇重结晶,得到固体1.1g,产率81%。ms(esi,m/z):[m+h]
+
:354.17。
[0075]
化合物41的合成:
[0076]
在反应瓶中,加入中间体41
‑
1(0.5g,1.4mmol),9
‑
(1
‑
萘基)
‑
10
‑
蒽硼酸(0.6g,1.7mmol),碳酸钾(1.3g,10mmol),甲苯(10ml),乙醇(3ml),水(3ml),四三苯基膦钯(0.02g),氮气保护下,加热回流10小时,冷却,加入甲苯(200ml),分液,有机相干燥,浓缩,固体用甲苯重结晶,得到固体0.6g,产率66%。元素分析:c
45
h
19
d
10
n3,c,86.93;h,6.28;n,6.79,ms(esi,m/z):[m+h]
+
:622.34。
[0077]
以下通过实施例对本发明化合物的效果进行详细说明。
[0078]
有机电致发光器件的制备,结构示意图见图2,具体器件结构如下:具体器件结构如下:玻璃/阳极(ito)/空穴注入层(hil)/空穴传输层(htl)/电子阻挡层(ebl)/发光层(主体材料bh:蓝色发光材料bd)/电子传输层(电子传输材料:8
‑
羟基喹啉锂)/电子注入层(镱yb)/阴极(mg:ag,10:1)。
[0079]
实施例7
[0080]
使用实施例1的化合物1制备oled
[0081]
(1)将透明导电ito玻璃基板110(上面带有阳极120)(中国南玻集团股份有限公司)在商用清洗剂中超声处理,在去离子水中冲洗,再依次经过乙醇,丙酮和去离子水洗净,在洁净环境下烘烤至完全除去水分,用紫外光合臭氧清洗,再用氧等离子处理30秒。
[0082]
(2)把上述带有阳极的玻璃基片至于真空腔内,抽真空,在ito上面蒸镀hil(5nm)作为空穴注入层130,蒸镀速率为0.1nm/s。
[0083]
(3)在空穴注入层上面蒸镀化合物ht1,形成80nm厚的空穴传输层140,蒸镀速率为0.1nm/s。
[0084]
(4)在空穴传输层上面蒸镀ht2,形成10nm厚的电子阻挡层150,蒸镀速率为0.1nm/s。
[0085]
(5)在空穴阻挡层上蒸镀30nm厚的发光层160,其中,bh为主体发光材料,而以3%重量比的bd作为掺杂客体材料,蒸镀速率为0.1nm/s。
[0086]
(6)在发光层上蒸镀30nm厚的50%重量比化合物1和50%重量比liq作为电子传输层170,蒸镀速率为0.1nm/s,
[0087]
(7)蒸镀2nmyb为电子注入层180和掺杂比为10:1的镁银作为器件阴极190。
[0088]
实施例8
[0089]
与实施例7的区别仅在于,步骤(6)中在发光层上蒸镀30nm厚的50%重量比化合物17和50%重量比liq作为电子传输层170。
[0090]
比较例1
[0091]
与实施例7的区别仅在于,用et1代替本发明化合物1。
[0092]
实验例1:
[0093]
所制备的器件用photoresearchpr650光谱仪测得的工作电压,亮度,效率,cie坐标,具体的如图3
‑
6所示,且三个器件都发射蓝光。以及测量在50ma/cm2电流密度下亮度跟运行时间的关系,具体如图7所示。
[0094]
图2为在不同的电流密度下的亮度曲线图,在10ma/cm2下的实施例7和实施例8的亮度为476.12cd/m2和511.45cd/m2,而比较例1为318.75cd/m2,显示用本发明提供的含有氘原子的有机电子材料制备的器件具有更高的亮度。图4,5和6所示在相同的电流密度下不同器件的电流效率,功率效率和外量子效率关系图,结果显示用本发明提供的含有氘原子的
有机电子材料制备的器件的效率显著提高,比如10ma/cm2下,实施例7和实施例8的电流效率为4.76cd/a和5.11cd/a,而比较例1为3.18cd/a,实施例7和实施例8的功率效率为4.01lm/w和4.31lm/w,而比较例1为2.69lm/w。
[0095]
图7显示本发明提供的化合物1制备的器件实施例7的使用寿命大大延长,在工作24小时后,亮度衰减1.3%,而比较例1在工作24小时后,亮度衰减了7%,显示出了更好的使用寿命。
[0096]
器件中所述结构式如下:
[0097][0098][0099]
上述有机材料都是现有的已知材料,由市场采购获得。
[0100]
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。