一类可绿色溶剂加工电致变色共轭聚合物制备及应用的制作方法

文档序号:24485697发布日期:2021-03-30 21:09阅读:166来源:国知局
一类可绿色溶剂加工电致变色共轭聚合物制备及应用的制作方法

本发明属于高分子材料技术领域,具体涉及一类可绿色溶剂加工电致变色共轭聚合物、制备方法及其应用。



背景技术:

颜色的变化可以对视觉产生刺激继而转变成信号,经过大脑处理传递给我们许多有用的信息。电致变色材料作为一种与色彩相关的电刺激响应材料,基于它们对光选择性的吸收和透射性质来调节光能,在当今光电领域展示出十分广泛的应用前景,例如建筑外部涂层、交通工具智能变色窗、电子标签、护目镜、军事动态隐身等。在众多电致变色材料中,聚合物电致变色材料相对于无极电致变色材料具有着色效率高、颜色变化丰富、结构易于修饰,加工成本低、良好成膜性、高热稳定性、强机械性能等特点,在柔性显示器和环保领域有着广阔的实际应用。此外聚合物电致变色材料中的共轭聚合物电致变色材料(导电聚合物电致变色材料)相对于其它聚合物电致变色材料来说具有较低的驱动电压,在节能方面具有更大的优势。同时,在驱动电压移除之后,还能保持有电压驱动时的变色效果,具有更好的记忆存储功能,因此,近几年来对共轭聚合物电致变色材料的研究仍是电致变色研究的主要方向。然而,目前共轭聚合物电致变色材料结构集中于聚吡咯、聚噻吩、聚苯胺、聚咔唑、聚吲哚及其衍生物上,其它结构共轭聚合物电致变色材料少有报导。除此之外,由于共轭聚合物电致变色材料结构特点导致该类材料在器件制备过程中使用剧毒溶剂(氯苯、甲苯等)进行加工处理。因此,在设计兼具高光电活性和热稳定性,并且在绿色溶剂中具有良好溶解性的新型共轭聚合物电致变色材料尤其重要。

苯并二噻吩-异靛青及其衍生物以其分子高度有序的晶体排列和可逆的氧化还原使得该类材料具有良好的光学性、热稳定性、形态稳定性和优异双极性传输(电子/空穴传输)特性,但受合成方法和原料价格以及在常见溶剂溶解性较差中所限,这类材料在光电方面尤其是电致变色领域研究鲜有报导。因此,在兼顾苯并二噻吩-异靛青原有优异热稳定性和光电性能基础上,开发一种在常见溶剂中(尤其是绿色溶剂)具有良好溶解性的苯并二噻吩-异靛青类共轭聚合物电致变色材料是十分必要的。



技术实现要素:

有鉴于此,本发明目的是提供一系列具有良好光电活性、热稳定性优异的、主链为含有长烷基侧链或低聚乙二醇侧链的苯并二噻吩-异靛青可绿色溶剂加工共轭聚合物电致变色材料制备方法及应用。本发明提供的共轭聚合物电致变色材料具有优异的光电活性、热稳定性以及在绿色溶剂中的溶解性。

本发明从分子设计的角度出发,通过在苯并二噻吩-异靛青共轭聚合物及其衍生物主链引入含有长烷基侧链或低聚乙二醇侧链,这种结构的共轭聚合物电致变色材料不仅具有优异光电特性和热稳定性,并且在一系列溶剂尤其是绿色溶剂(四氢呋喃、2-甲基四氢呋喃、柠檬烯等)中表现出良好的溶解性。实验结果表明:本发明提供的可绿色溶剂加工共轭聚合物电致变色材料具有优异光电性能和热稳定(5%热失重300℃以上)。除此之外这种材料既能在有机相(乙腈、二甲基甲酰胺等)电解液和水相电解液中负向电压下电致变色,又能在正向电压下电致变色,同时表现出n-型掺杂特性和p-型掺杂特性,可以预见此类材料在电致变色领域具有多功能特性、较高的科学研究价值和广阔的应用前景。

本发明所述的应用于绿色溶剂加工电致变色共轭聚合物,其结构式如下所示:

式(i)

其中,j为-ch2-或-o-,x为0或1;y为0或1;a为-s-或-se-;

m可选式m1~m5所示结构中的一种:

q和e独立地选自式q1~q4所示结构中的一种:

式(q1)~(q4)中,n为>0的整数,优选为2≤n≤10,具体可为3、4、5、6、7、8或9;

这里需要注意的是当q(或e)选自式q4所示结构时,e(或q)只能选自式q1~q3所示结构的一种,即q和e不能同时选自式q4所示结构。此外制备式(i)所示重复单元结构的聚合物采用的所有前驱单体可以市场购入得到。同样可以参照如下文献(“narrow-optical-gapp-conjugatedsmallmoleculesbasedonterminalisoindigoandthienoisoindigoacceptorunitsforphotovoltaicapplication”,makotokarakawa等,rcsadvances,2013年第37期)制备式(i)所示结构的聚合物。

进一步,在本发明提供的一些实施例中,可绿色溶剂加工电致变色共轭聚合物为p1~p4结构中的一种:

在本发明中,所述绿色溶剂加工共轭聚合物的数均分子量优选为15~150千道尔顿,分散指数(分散指数是重均分子量与数均分子量的比值)优选为1.5~5。

在本发明中,伏安性能和电致变色性能测试使用配备标准三电极结构的生物分析系统(bas)恒电位仪进行。以二甲基甲酰胺、二甲基乙酰胺、乙腈、水等溶剂为载体,0.1摩尔每升的四丁基六氟膦酸铵、四丁基高氯酸铵、氯化钠等为电解质,参比电极可选为银/硝酸银参比电极或银/氯化银参比电极,在氩气或氮气气氛下以10~500毫伏每秒的扫描速度进行测量。将聚合物薄膜以1~100毫克每毫升四氢呋喃、2-甲基四氢呋喃、柠檬烯或三氯甲烷等溶液旋涂到ito玻璃、fto玻璃工作电极或滴涂在铂网工作电极上,在室内氮气流、氩气流下或真空(干燥温度为室温~120摄氏度)干燥,然后进行相关测量。

本发明从分子设计的角度出发,在苯并二噻吩-异靛青共轭聚合物主链引入长烷基侧链或低聚乙二醇侧链,这种结构的聚合物不仅具有相应电活性单元的光电特性和热稳定性,并且在一系列绿色溶剂中表现出良好的溶解性。本发明提供的共轭聚合物兼顾优异的光电活性、极性溶剂中的溶解性及热稳定性,因此其在电致变色方向有着广阔的发展前景。

实验结果表明:本发明提供的共轭聚合物兼顾优异的光电活性、及热稳定性的同时,在绿色溶剂中也具有良好的溶解性,完全满足常规器件加工工艺技术要求。此外这种材料同时在有机相(乙腈、二甲基甲酰胺等)电解液和水相电解液中负向电压下电致变色和正向电压下电致变色,表现出n-型掺杂特性和p-型掺杂特性。证明其在电致变色方向具有巨大的应用潜力。在此基础上,如根据具体的需求,还可将其他光电功能性基团引入到聚合物侧链,或改变主链相应的硫族元素,便可制备出一系列满足不同光电性能要求的给-体共轭功能性聚合物材料,从而进一步扩充材料的应用领域和提升材料的实用价值。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。

图1是本发明实施例1制备的聚合物p1的核磁谱图;

图2是本发明实施例1制备的聚合物p1的紫外-可见谱图;

图3是本发明实施例1制备的聚合物p1的循环伏安曲线;

图4是本发明实施例1制备的聚合物p1的氮气氛围下热失重谱图;

图5是本发明实施例1制备的聚合物p1的负向电压下电致变色谱图;按箭头方向,电压依次增加;

图6是本发明实施例1制备的聚合物p1的正向电压下电致变色谱图;按箭头方向,电压依次增加;

具体实施方式

下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

为更清楚起见,下面通过以下实施例进行详细说明:

实施例1:聚合物p1由相应前驱单体通过still偶联反应得到,所有的前驱单体可以市场购入得到,这里不再表述。采用氢谱核磁对获得的聚合物结构进行表征,图1为聚合物p1的氢谱核磁图。结果显示聚合物由式p1所示结构的重复单元组成。图2为聚合物p1的紫外-可见谱图,本次实验是在1毫克/毫升的四氢呋喃溶液中测试,在图中可以看到436纳米是典型的两种给体单元π-π*跃迁吸收峰,690纳米处是分子内电子转移吸收峰。聚合物p1的数均分子量、重均分子量及分散指数的数据分别是26千道尔顿、131千道尔顿和4.90。由同样的聚合方法也可得到聚合物p2、p3和p4。对本实施例制备得到的聚合物p1进行循环伏安曲线分析,选用电解液为0.1摩尔每升的四丁基六氟膦酸铵的乙腈溶液,参比电极为银/硝酸银参比电极,对电极是铂丝,聚合物p1溶于2-甲基四氢呋喃中并旋涂到ito玻璃上做工作电极;测试条件为100毫伏每秒,测试范围-1.5~1伏特,测试在氩气气氛下进行以排除氧气干扰。如图3所示,在第一圈循环中材料出现了两对对可逆的氧化还原峰,其还原电位分别为-1.21伏特和-1.43伏特,其对应了异靛青的单阴离子还原电位和双阴离子还原电位。对本实施例制备得到的聚合物p1进行热稳定性测试,如图4所示聚合物的5%热失重在300℃以上,表明聚合物拥有极佳的热稳定性;

实施例2:对实施例制备得到的聚合物p1进行有机相电解液中电致变色测试。p1聚合物膜的光谱电化学测试和电致变色性能测试在一个自制的石英比色皿里进行,以自制的ag/agno3作为参比电极,铂丝(直径1毫米)作为对电极和透明ito玻璃(工作面积5厘米﹡0.6厘米)作为工作电极。电解液为乙腈-四丁基六氟膦酸铵(0.1摩尔每毫升)。聚合物溶于2-甲基四氢呋喃溶剂(30毫克每毫升)并以1000转每秒速度旋涂于ito玻璃工作电极上。旋涂好的工作电极在真空条件下60摄氏度干燥12小时。进行电致变色光谱电化学测试前先用未旋涂聚合物薄膜ito玻璃工作电极在乙腈-四丁基六氟膦酸铵(0.1摩尔每毫升)溶液中扣除背景。(电化学工作站与紫外-可见光谱仪联用,电化学测试条件与实施例1中循环伏安曲线分析相同,选用恒电压测试,分别测量材料在0.0~-1.5伏特范围和0.0~0.8伏特内不同电压影响下的紫外吸收曲线的变化;紫外测试条件为1.0纳米波长间隔,测试范围300~1000纳米,测试在氩气气氛下进行以排除氧气干扰)。如图5,对于聚合物p1,可以看到随着反向电压的上升,材料在436纳米处的吸收峰明显增强,其直观表现为膜由蓝绿色变为浅绿。如图6,随着正向电压的上升,材料在436纳米处的吸收峰明显减弱,其直观表现为膜由蓝绿色变为浅灰黄色,展现出良好的电致变色应用特性;

实施例3:对实施例1制备得到的聚合物p1进行水相电解液中电致变色测试。p1聚合物膜的光谱电化学测试和电致变色性能测试在一个自制的石英比色皿里进行,以自制的ag/agcl作为参比电极,铂丝(直径1毫米)作为对电极和透明ito玻璃(工作面积5厘米﹡0.6厘米)作为工作电极。电解液为水-氯化钠(0.1摩尔每毫升)。聚合物溶于2-甲基四氢呋喃溶剂(30毫克每毫升)并以1000转每秒速度旋涂于ito玻璃工作电极上。旋涂好的工作电极在真空条件下60摄氏度干燥12小时。进行电致变色光谱电化学测试前先用未旋涂聚合物薄膜ito玻璃工作电极在水-氯化钠(0.1摩尔每毫升)溶液中扣除背景。(电化学工作站与紫外-可见光谱仪联用,电化学测试条件与实施例1中循环伏安曲线分析相同,选用恒电压测试,分别测量材料在0.0~-1.0伏特范围和0.0~0.8伏特内不同电压影响下的紫外吸收曲线的变化;紫外测试条件为1.0纳米波长间隔,测试范围300~1000纳米,测试在氩气气氛下进行以排除氧气干扰)。对于聚合物p1,随着反向电压的上升,材料在430纳米处的吸收峰明显增强,其直观表现为膜由蓝绿色变为浅绿,随着正向电压的上升,材料在430纳米处的吸收峰明显减弱,其直观表现为膜由蓝绿色变为浅灰黄色,展现出良好的电致变色应用特性;

实施例4:对实施例1制备得到的聚合物p4进行有机相电解液中电致变色测试。p4聚合物膜的光谱电化学测试和电致变色性能测试在一个自制的石英比色皿里进行,以自制的ag/agno3作为参比电极,铂丝(直径1毫米)作为对电极和铂网(工作面积1厘米﹡1厘米)作为工作电极。电解液为二甲基甲酰胺-四丁基六氟膦酸铵(0.1摩尔每毫升)。聚合物溶于电解液二甲基甲酰胺-四丁基六氟膦酸铵(30毫克每毫升)中。进行电致变色光谱电化学测试前先用二甲基甲酰胺-四丁基六氟膦酸铵(0.1摩尔每毫升)溶液中扣除背景。(电化学工作站与紫外-可见光谱仪联用,电化学测试条件与实施例1中循环伏安曲线分析相同,选用恒电压测试,分别测量材料在0.0~-1.0伏特范围和0.0~0.8伏特内不同电压影响下的紫外吸收曲线的变化;紫外测试条件为1.0纳米波长间隔,测试范围300~1000纳米,测试在氩气气氛下进行以排除氧气干扰)。对于聚合物p4,随着反向电压的上升,材料在440纳米处的吸收峰明显增强,其直观表现为膜由蓝绿色变为浅绿,随着正向电压的上升,材料在440纳米处的吸收峰明显减弱,其直观表现为膜由蓝绿色变为浅灰黄色,展现出良好的电致变色应用特性。

溶解性测试

对本发明制备的一系列聚合物的溶解性进行测试,结果如表1所示:

表1:溶解性测试数据

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1