细胞程序性死亡-配体-1拮抗剂化合物的制作方法

文档序号:25281147发布日期:2021-06-01 17:27阅读:82来源:国知局
本申请为分案申请,其母案申请号为202080003296.6:母案申请日为2020年02月20日。本申请要求于2019年2月21日提交中国专利局、申请号为201910130313.1、发明名称为“pd-l1拮抗剂化合物”,以及于2019年7月30日提交中国专利局、申请号为201910695768.8、发明名称为“pd-l1拮抗剂化合物”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。本发明涉及一种pd-l1拮抗剂化合物及使用其治疗/预防免疫相关病症的方法。
背景技术
:肿瘤免疫治疗由于其卓越的疗效和创新性,在2013年被《科学》杂志评为年度最重要的科学突破。肿瘤免疫治疗有望成为继手术、化疗、放疗、靶向治疗后肿瘤治疗领域的一场革新。肿瘤免疫治疗是应用免疫学原理和方法,提高肿瘤细胞的免疫原性和对效应细胞杀伤的敏感性,激发和增强机体抗肿瘤免疫应答,并应用免疫细胞和效应分子输注宿主体内,协同机体免疫系统杀伤肿瘤、抑制肿瘤生长。肿瘤免疫治疗近来备受关注,是肿瘤治疗领域的焦点。近几年,肿瘤免疫治疗的好消息不断,目前已在一些肿瘤类型如黑色素瘤,非小细胞肺癌等的治疗中展示出了强大的抗肿瘤活性,并已有肿瘤免疫治疗药物获得美国fda(foodanddrugadministration,fda)批准临床应用。pd-1(程序性死亡受体1,programmeddeath1)为cd28超家族成员。以pd-1为靶点的免疫调节在抗肿瘤、抗感染、抗自身免疫性疾病及器官移植存活等方面均有重要的意义。其配体pd-l1也可作为靶点,相应的抗体也可以起到相同的作用。pd-l1(程序性死亡受体-配体1,programmedcelldeath-ligand1)是大小为40kda的第一型跨膜蛋白。正常情形下免疫系统会对聚集在淋巴结或脾脏的外来抗原产生反应,促进具有抗原特异性的t细胞增殖。而pd-1与pd-l1结合,可以传导抑制性的信号,减低t细胞的增殖。肿瘤细胞逃避t细胞摧毁的一种途径是通过在它表面产生pd-l1。当免疫细胞t细胞表面的pd-1识别pd-l1后,可以传导抑制性信号,t细胞就不能发现肿瘤细胞和向肿瘤细胞发出攻击信号。pd-1是通过解除肿瘤细胞逃避免疫系统的新型免疫疗法。pd-1免疫疗法的作用机制是针对pd-1或pd-l1设计特定的蛋白质抗体,阻止pd-1和pd-l1的识别过程,部分恢复t细胞功能,从而使t细胞可以杀死肿瘤细胞。pd-1表达于活化的t细胞,b细胞及髓系细胞,其有两个配体,即pd-l1和pd-l2。pd-l1/l2在抗原递呈细胞都表达,pd-l1在多种组织也有表达。pd-1与pd-l1的结合介导t细胞活化的共抑制信号,调节t细胞活化和增殖,起到类似于ctla-4的负调节作用。华裔科学家陈列平实验室首先发现pd-l1在肿瘤组织高表达,而且调节肿瘤浸润cd8t细胞的功能。因此,以pd-1/pd-l1为靶点的免疫调节对抗肿瘤有重要的意义。多个靶向pd-1/pd-l1相互作用的治疗性单克隆抗体(mabs)已被美国fda批准上市。除了开发相关单克隆抗体之外,寻找方便癌症患者的口服小分子化合物用来靶向抑制免疫检查点也是肿瘤免疫疗法的前沿领域。小分子化合物能够穿过细胞膜作用于细胞内靶点,所以应用范围广泛。其次,小分子经化学修饰后往往具有良好的生物利用度和依从性,有效避免消化肠道中酶类的分解失活。最后,在生产工艺、剂型设计和给药方式等多种层面,小分子的研究也颇为成熟。大多数单克隆抗体(mabs)的使用途径是高剂量的静脉注射。小分子药物,其更适合口服给药,可以减少严重的免疫相关不良事件。与单克隆抗体相比,小分子药物抑制剂有很多其他好处,例如,制造成本更经济、稳定,且器官和肿瘤的渗透性更好。考虑到小分子药物动力学性质的众多优点,它将会在单一疗法或其它组合方案里体现出剂量上的灵活性。本发明的小分子化合物的可为患者和医生提供一个引人注目的治疗选择。技术实现要素:本发明提供了具有以下式(iv)结构的化合物:其中r2表示-(c0-c6亚烷基)nrarb,其中ra、rb分别独立地表示氢或者表示被-ora、-c(o)ra、-c(o)ora所取代的c1-c6烷基;其中,r3表示氢、(c1-c6)烷基、卤素;其中,w1表示crc或者n;其中,m、n、o为0、1、2;其中,z1或z2表示氢、卤素、氰基或c1-c6烷基;其中卤素优选为氯或者溴;其中,a表示或者;a表示其中,q表示-(c0-c6亚烷基)-;w6表示ch或n;r4表示-(c0-c6亚烷基)nrarb,其中,ra、rb分别独立地表示氢或者被-ora、-c(o)ra、-c(o)ora、所取代的c1-c6烷基;r5表示氢、(c1-c6)烷基、卤素;r6表示被下述基团取代的-o(c1-c6)烷基、-o(c0-c6亚烷基)(c6-c10芳基)或-o(c0-c6亚烷基)(5-10元杂芳基),所述的取代基选自:-ora、氰基、卤素;q表示0、1、2或3;其中,y选自其中w4和w5分别独立地表示ch或者n;p表示0、1、2或3;z3表示氢、(c1-c6)烷基、(c3-c6)环烷基、卤代(c1-c6)烷基、卤素;优选地y选自其中ra表示氢或者c1-c6烷基。在本发明的技术方案中,其中a优选选自:在本发明的技术方案中,其中,r2优选选自在本发明的技术方案中,其中w6表示ch。在本发明的技术方案中,其中z1或z2优选地表示氢、卤素、氰基或c1-c6烷基;其中卤素优选为氯或者溴。具体地,本发明提供了如下化合物,具有以下结构:下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则所有的百分数、比率、比例、或份数按重量计。本发明中的重量体积百分比中的单位是本领域技术人员所熟知的,例如是指在100毫升的溶液中溶质的重量。除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。具体实施例中间体i6:中间体i6的合成路线如下:第一步:将1-溴-3-氯丙烷(5.99g,38.06mmol)和4-溴-1h-吲唑(5.0g,25.38mmol)溶于乙腈(50ml)中,加入碳酸钾(7.01g,50.75mmol)。反应混合物于60℃下搅拌过夜。将反应液冷却至室温,过滤,浓缩。残留物用快速过柱机分离得到4-溴-1-(4-氯丙基)-1h-吲唑(3.0g,10.97mmol),淡黄色液体,收率43.2%。ms(esi):m/z273.4(m+h)+.第二步:将4-溴-1-(4-氯丙基)-1h-吲唑(1.5g,5.48mmol)和(r)-3-羟基吡咯烷(955.42mg,10.97mmol)溶于乙腈(20ml)中,加入碳酸钾(3.03g,21.93mmol)和碘化钾(0.25g,1.48mmol)。反应混合物于60℃下搅拌过夜。将反应液冷却至室温,过滤,滤液浓缩后加入50ml乙酸乙酯,用20ml水洗三次,再用20ml饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。得到(r)-1-(4-(4-溴-1h-吲唑-1-基)丙基)吡咯烷-3-醇(1.78g,5.49mmol),淡黄色液体,收率100%。ms(esi):m/z324.4(m+h)+.第三步:将(r)-1-(4-(4-溴-1h-吲唑-1-基)丙基)吡咯烷-3-醇(1.78g,5.49mmol)和双联硼酸频那醇酯(2.09g,8.24mmol)溶于1,4-二氧六环(20ml)中,加入醋酸钾(1.62g,16.47mmol)和[1,1'-双(二苯基膦基)二茂铁]二氯化钯(401.72mg,0.549mmol)。反应混合物在氮气氛围下90℃搅拌过夜。将反应液冷却至室温,加入100ml乙酸乙酯,经硅藻土过滤,滤液用50ml水洗三次,50ml饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物用快速过柱机分离得到中间体i6(1.38g,3.74mmol),淡黄色液体,收率68.1%。ms(esi):m/z372.4(m+h)+.中间体i22:中间体i22的合成路线如下:第一步:将1-溴-3-氯丙烷(101.01g,641.60mmol)和3-溴-2-甲基苯酚(80.0g,427.73mmol)溶于乙腈(800ml)中,加入碳酸钾(177.35g,1.28mol)。反应混合物于60℃下搅拌过夜。将反应液冷却至室温,过滤,滤液浓缩后得到1-溴-3-(3-氯丙基)-2-甲基苯(112.5g,427.73mmol),淡黄色液体,收率100%。第二步:将化合物1-溴-3-(3-氯丙基)-2-甲基苯(110g,417.37mmol)和(r)-3-羟基吡咯烷(54.54g,626.05mmol)溶于乙腈(1500ml)中,加入碳酸钾(173.05g,1.25mol)和碘化钾(6.93g,41.74mmol)。反应混合物于60℃下搅拌过夜。将反应液冷却至室温,过滤,滤液浓缩后加入1000ml乙酸乙酯,用200ml水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤浓缩得到(r)-1-(3-(3-溴-2-甲基苯氧基)丙基)吡咯烷-3-醇(130.0g,413.73mmol),淡黄色液体,收率99.1%。ms(esi):m/z314.6(m+h)+.第三步:将(r)-1-(3-(3-溴-2-甲基苯氧基)丙基)吡咯烷-3-醇(130.0g,413.73mmol)和双联硼酸频那醇酯(157.59g,620.59mmol)溶于1,4-二氧六环(500ml)中,加入醋酸钾(104.26g,1.24mol)和[1,1'-双(二苯基膦基)二茂铁]二氯化钯(15.14g,20.69mmol)。反应混合物在氮气氛围下90℃搅拌过夜。将反应液冷却至室温,加入500ml乙酸乙酯,经硅藻土过滤,滤液用100ml水洗三次,100ml饱和食盐水洗一次次,无水硫酸钠干燥,过滤,浓缩。残留物用快速过柱机分离得到中间体i22(63.7g,176.32mmol),淡黄色液体,收率42.6%。ms(esi):m/z362.6(m+h)+.中间体i26:中间体i26的合成路线如下:第一步:将2-氯-5-羟基苯甲酸(29.0g,168.05mmol)溶于四氢呋喃(100ml)中,在氮气氛围和冰浴下滴加1.0mol/l硼烷四氢呋喃溶液(336.10ml,336.10mmol)。滴加完毕,反应液升至室温搅拌16小时。tlc(pe:ea=4:1,rf=0.2)检测原料消耗完全,冰浴下向反应液中滴加甲醇淬灭反应,直至不再有气泡冒出。浓缩溶剂得到化合物i26-a(26.6g,167.74mmol),淡黄色固体,收率99.8%。1hnmr(500mhz,d6-dmso)δ9.59(s,1h),7.15(d,j=8.5hz,1h),6.99(d,j=3.0hz,1h),6.64(dd,j=8.5,3.0hz,1h),5.32(t,j=6.0hz,1h),4.47(d,j=6.0hz,2h).第二步:将化合物i26-a(26.6g,167.74mmol)和咪唑(11.53g,169.41mmol)溶于二氯甲烷(300ml)中,在0℃条件下分批加入tbscl(25.53g,169.41mmol,29.35ml)的二氯甲烷(100ml)溶液。混合物升温至30℃搅拌16小时。用50ml水淬灭反应,水相用二氯甲烷萃取(100mlx2)。合并有机相,用50ml饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩。残留物用快速过柱机分离得到i26-b(33.4g,122.79mmol),淡黄色液体,收率73.0%。1hnmr(500mhz,d6-dmso)δ9.66(s,1h),7.17(d,j=8.5hz,1h),6.97(s,1h),6.67(d,j=8.5hz,1h),4.66(s,2h),0.93(s,9h),0.11(s,6h).第三步:将i26-b(8.0g,29.32mmol)溶于乙腈(100ml)中,加入三乙胺(14.83g,146.60mmol),接着加入氯化镁(5.58g,58.64mmol)和多聚甲醛(8.80g,293.21mmol)。混合物在氮气氛围下加热至90℃剧烈搅拌20小时。向反应液中加入100ml水稀释,用饱和柠檬酸水溶液调节ph=3-4,然后用乙酸乙酯萃取(2x200ml)。合并有机相,用100ml饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩。残留物用快速过柱机分离得到i26-c(5.0g,16.67mmol),白色固体,收率56.7%。1hnmr(500mhz,d6-dmso)δ10.97(s,1h),10.23(s,1h),7.58(s,1h),7.25(s,1h),4.72(s,2h),0.96(s,9h),0.14(s,6h).第四步:将5-氯甲基-3-氰基吡啶盐酸盐(3.2g,16.95mmol)溶于n,n-二甲基甲酰胺(40ml)中,在冰浴下加入n,n-二异丙基乙胺(5.48g,42.38mmol)和碳酸钾(5.86g,42.38mmol)。搅拌10分钟后加入i26-c(4.25g,14.13mmol)和碘化钾(234.50mg,1.41mmol)。混合物在冰浴下搅拌30分钟,然后升至50℃搅拌16小时。将反应液在冰浴下冷却,加入100ml水稀释直至不再有固体析出,过滤固体,用水洗涤,干燥,然后用快速过柱机分离得到i26-d(5.0g,11.99mmol),白色固体,收率84.9%。ms(esi):m/z417.2(m+h)+.第五步:将i26-d(5.0g,11.99mmol)溶于甲苯(10ml)中,加入乙二醇(14.89g,239.82mmol,13.29ml)和对甲苯磺酸(228.09mg,1.20mmol)。然后滴加原甲酸三甲酯(2.55g,23.98mmol,2.62ml)。混合物在氮气氛围下加热至80℃搅拌16小时。反应液在冰浴下冷却,用30ml饱和碳酸氢钠水溶液淬灭,用30ml水稀释,水溶液用乙酸乙酯萃取(2x50ml)。合并有机相,用20ml饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩。残留物用快速过柱机分离得到i26-e(5.5g,11.93mmol),白色固体,收率99.5%。ms(esi):m/z461.2(m+h)+.1hnmr(500mhz,d6-dmso)δ8.99(d,j=2.0hz,1h),8.91(d,j=2.0hz,1h),8.37(s,1h),7.39(s,1h),7.15(s,1h),6.06(s,1h),5.30(s,2h),4.68(s,2h),4.04–4.01(m,2h),3.94–3.91(m,2h),0.87(s,9h),0.06(s,6h).第六步:将i26-e(2.2g,4.77mmol)溶于四氢呋喃(10ml)中,加入1mol/l四丁基氟化铵的四氢呋喃溶液(7.16ml,7.16mmol),反应液在30℃搅拌半小时。用10ml水稀释,水溶液用乙酸乙酯萃取(2x50ml)。合并有机相,用20ml饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩。残留物用乙酸乙酯和石油醚混合液(3%ea,20ml)打浆,过滤得到i26-f(1.58g,4.57mmol),淡黄色固体,收率95.5%。ms(esi):m/z347.2(m+h)+.1hnmr(500mhz,d6-dmso)δ9.00(d,j=2.0hz,1h),8.96(d,j=2.0hz,1h),8.40(d,j=2.0hz,1h),7.37(s,1h),7.30(s,1h),6.05(s,1h),5.51(t,j=5.5hz,1h),5.28(s,2h),4.53(d,j=5.5hz,2h),4.03–4.0(m,2h),3.93–3.90(m,2h).第七步:将i26-f(1.5g,4.33mmol)溶于二氯甲烷(30ml)中,加入n,n-二异丙基乙胺(1.68g,12.98mmol,2.26ml),在0℃氮气氛围下加入甲磺酸酐(1.51g,8.65mmol)。然后加入n,n-二异丙基乙胺(1.68g,12.98mmol,2.26ml)和盐酸二氧六环(4m,1.62ml)的二氯甲烷(10ml)混合液。反应液在25℃搅拌16小时。用20ml水淬灭反应,水溶液用二氯甲烷萃取(2x50ml)。合并有机相,用20ml饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩。残留物用快速过柱机分离得到i26-g(1.4g,3.85mmol),淡黄色固体,收率88.6%。ms(esi):m/z365.2(m+h)+.第八步:将i26-g(1.36g,3.72mmol),4-溴-1h-吲唑(733.72mg,3.72mmol)和碳酸钾(1.03g,7.45mmol)溶于n,n-二甲基甲酰胺(20ml)中。混合物在50℃下搅拌16小时。反应液在冰浴下冷却,用水稀释直至固体不再析出,过滤,用水洗涤,干燥,再用快速过柱机分离得到中间体i26(1.08g,2.06mmol),淡黄色固体,收率55.2%。ms(esi):m/z525.0(m+h)+.1hnmr(500mhz,d6-dmso)δ8.96(d,j=2.0hz,1h),8.82(s,1h),8.27(s,1h),8.05(s,1h),7.70(d,j=8.5hz,1h),7.45(s,1h),7.40(d,j=7.5hz,1h),7.32(t,j=7.5hz,1h),6.91(s,1h),6.04(s,1h),5.71(s,2h),5.16(s,2h),4.04–4.01(m,2h),3.97–3.89(m,2h).中间体i29:中间体i29的合成路线如下:将中间体i26(1.0g,912.93umol),联硼酸频那醇酯(695.48mg,2.74mmol),醋酸钾(537.58mg,5.48mmol)和pd(dppf)cl2(66.80mg,91.29umol)混合于二氧六环(20ml)中。混合物在氮气氛围下加热至100℃搅拌16小时。待反应液冷却至室温,用50ml乙酸乙酯稀释,硅藻土过滤,在用50ml乙酸乙酯洗涤,浓缩滤液。残留物用快速过柱机分离得到中间体i29(0.28g,489.51umol),淡黄色固体,收率53.5%。ms(esi):m/z573.2(m+h)+.实施例54:第一步:将中间体i26(1.5g,912.93umol),中间体i22(494.74mg,1.37mmol),碳酸钾(630.88mg,4.56mmol)和pd(dppf)cl2(66.80mg,91.29umol)混合于二氧六环(10ml)和水(2ml)的混合溶剂中。混合物在氮气氛围下加热至100℃搅拌3小时。待反应液冷却至室温,用20ml水稀释,水溶液用乙酸乙酯萃取(2x30ml)。合并有机相,用20ml饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩。得到粗品化合物54a(0.62g,913.10umol),淡黄色固体,收率100%。ms(esi):m/z680.3(m+h)+.第二步:将化合物54a(0.6g,882.11umol)溶于四氢呋喃(10ml)中,加入4.0mol/l盐酸水溶液(1.85ml)。混合物在25℃下搅拌半小时。然后用10ml饱和碳酸氢钠水溶液中和,用10ml水稀释,水溶液用乙酸乙酯萃取(2x30ml)。合并有机相,用10ml饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩。得到化合物54b(0.56g,881.19umol),淡黄色固体,收率99.8%。ms(esi):m/z636.3(m+h)+.第三步:将化合物54b(0.1g,157.20umol)溶于n,n-二甲基甲酰胺(2ml)中,加入o-叔丁基-l-丝氨酸叔丁酯(0.09g,414.17umol)和乙酸(262.50mg,4.37mmol,0.25ml)。混合物在30℃下搅拌2小时。然后向混合物中加入三乙酰氧基硼氢化钠(199.90mg,943.19umol),反应在30℃下搅拌1小时。然后加入20ml水淬灭,水溶液用乙酸乙酯萃取(2x30ml)。合并有机相,用10ml饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩。残留物用制备薄层层析分离得到化合物54c(0.09g,107.66umol),淡黄色固体,收率68.4%。ms(esi):m/z837.6(m+h)+.第四步:将化合物54c(0.08g,95.53umol)溶于四氢呋喃(6ml)中,加入6.0mol/l盐酸水溶液(6ml)。混合物加热至50℃搅拌3小时。冷却至室温,加入醋酸钠调节ph=4-5,减压蒸去溶剂,加入3mln,n-二甲基甲酰胺。过滤固体,用1mln,n-二甲基甲酰胺洗涤固体一次,滤液直接用反向制备色谱分离得到化合物54(20mg,27.62umol),白色固体,收率28.9%。ms(esi):m/z725.9(m+h)+.1hnmr(500mhz,d6-dmso)δ8.95(d,j=2.0hz,1h),8.85(d,j=2.0hz,1h),8.34(s,1h),7.69(s,1h),7.65(d,j=8.5hz,1h),7.55(s,1h),7.44(dd,j=8.5,7.0hz,1h),7.26(t,j=8.0hz,1h),7.01(t,j=7.5hz,2h),6.91(d,j=7.5hz,1h),6.86(s,1h),5.70(s,2h),5.15–5.05(m,2h),4.21(s,1h),4.08(t,j=6.0hz,2h),3.94(d,j=14.0hz,1h),3.87(d,j=14.0hz,1h),3.64–3.57(m,3h),3.16–3.12(m,1h),2.81–2.76(m,1h),2.72–2.60(m,3h),2.58–2.52(m,1h),2.46–2.34(m,2h),2.05–1.85(m,6h),1.61–1.53(m,1h).实施例60:化合物60的合成基本同化合物54,不同之处在于用中间体i6替代中间体i22,并将2-氨基-2-甲基-1,3-丙二醇替代o-叔丁基-l-丝氨酸叔丁酯。ms(esi):m/z735.5(m+h)+.1hnmr(500mhz,d6-dmso)δ8.94(s,1h),8.86(s,1h),8.32(s,1h),8.04(d,j=6.0hz,2h),7.77(d,j=8.5hz,1h),7.72(d,j=8.5hz,1h),7.61–7.50(m,3h),7.48–7.40(m,2h),6.88(s,1h),5.75(s,2h),5.13(s,2h),4.53(t,j=6.5hz,2h),4.21(s,2h),3.79(s,2h),3.70–3.63(m,2h),2.76–2.73(m,1h),2.68–2.63(m,1h),2.47–2.40(m,3h),2.06–1.96(m,3h),1.62–1.56(m,1h),0.95(s,3h).实施例61:第一步:将中间体i26(0.3g,572.52umol),中间体i29(0.39g,687.02umol),碳酸钾(158.7mg,1.15mmol)和pd(dppf)cl2(41.67mg,0.057mmol)混合于二氧六环(10ml)和水(2ml)的混合溶剂中。混合物在氮气氛围下加热至100℃搅拌3小时。待反应液冷却至室温,用20ml水稀释,水溶液用乙酸乙酯萃取(2x30ml)。合并有机相,用20ml饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩。得到粗品化合物61a(413mg,464.31umol),黑色固体,收率81.1%。ms(esi):m/z891.2(m+h)+.第二步:将化合物61a(413mg,464.31umol)溶于四氢呋喃(5ml)中,加入4.0mol/l盐酸水溶液(1ml)。混合物在25℃下搅拌半小时。然后用10ml饱和碳酸氢钠水溶液中和,用10ml水稀释,水溶液用乙酸乙酯萃取(2x30ml)。合并有机相,用10ml饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩。得到化合物61b(359mg,447.59umol),淡黄色固体,收率96.4%。ms(esi):m/z803.8(m+h)+.第三步:将化合物61b(359mg,447.59umol)溶于n,n-二甲基甲酰胺(5ml)中,加入o-叔丁基-l-丝氨酸叔丁酯(242.82mg,1.12mmol)和乙酸(107.42mg,1.79mmol)。混合物在25℃下搅拌2小时。然后向混合物中加入三乙酰氧基硼氢化钠(379.56mg,1.79mmol),反应在25℃下搅拌半小时。再补加三乙酰氧基硼氢化钠(379.56mg,1.79mmol),并在25℃下继续搅拌半小时。然后加入20ml水淬灭,水溶液用乙酸乙酯萃取(3x50ml)。合并有机相,用20ml饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩。残留物用制备薄层层析分离得到化合物61c(0.25g,207.64umol),淡黄色固体,收率46.4%。ms(esi):m/z603.2(m/2+h)+.第十三步:将化合物61c(0.2g,165.80umol)溶于四氢呋喃(5ml)中,加入6.0mol/l盐酸水溶液(5ml)。混合物加热至50℃搅拌4小时。冷却至室温,加入醋酸钠调节ph=4-5,减压蒸去溶剂,加入5mln,n-二甲基甲酰胺。过滤固体,用1mln,n-二甲基甲酰胺洗涤固体一次,滤液直接用反向制备色谱分离得到化合物61(25mg,25.51umol),白色固体,收率15.4%。ms(esi):m/z981.3(m+h)+.1hnmr(500mhz,d6-dmso)δ8.92(d,j=1.5hz,2h),8.83(s,2h),8.32(s,2h),8.21(hcooh,s,0.27h),8.07(s,2h),7.73(d,j=8.5hz,2h),7.65–7.51(m,4h),7.47(d,j=7.0hz,2h),6.87(s,2h),5.75(s,4h),5.20–5.06(m,4h),3.97(d,j=14.5hz,2h),3.89(d,j=14.5hz,2h),3.66(dd,j=11.0,4.5hz,2h),3.62–3.59(m,2h),3.17(d,j=5.0hz,2h).细胞水平pd-1/pd-l1信号抑制的生物活性检测本检测方法用于本发明所述化合物的细胞水平生物学活性评价。实验原理本检测方法采用荧光素酶报告基因法检测化合物对细胞水平pd-1/pd-l1信号抑制的生物活性。pd-1/nfat-reporter-jurkat细胞稳定表达人pd-1,且表达由nfat元件调控的荧光素酶报告基因;tcractivator/pd-l1-cho细胞稳定表达人pd-l1和tcr激活元件。当两株细胞共培养时,pd-1/pd-l1的结合会抑制tcr信号通路,从而抑制下游nfat控制的荧光素酶报告基因表达。当加入pd-1/pd-l1抗体或者抑制剂,这种抑制作用被反转,荧光素酶表达,从而可以检测pd-1/pd-l1抑制剂对荧光素酶活性影响。实验材料与设备pd-1/nfat-reporter-jurkat细胞(货号60535)以及tcractivator/pd-l1-cho细胞(货号60536)购自bpsbioscience公司;pd-l1抗体(atezolizumab,货号a2004)购自selleck公司;荧光素酶检测试剂(one-glotmluciferaseassaysystem,货号e6120)购自promega公司;多功能微孔板检测仪(型号spectramaxi3x)购自moleculardevices公司。实验主要过程按常规细胞培养实验操作流程培养pd-1/nfat-reporter-jurkat细胞和tcractivator/pd-l1-cho细胞。收集tcractivator/pd-l1-cho细胞并按照35000个/每孔,接种到96孔培养板中,培养基体积为100微升,37℃孵育过夜。第二天,弃去培养基,加入化合物孵育30分钟,同时设置溶剂对照(二甲基亚砜,dmso,终浓度0.1%)和pd-l1抗体(atezolizumab,终浓度约10nm)阳性对照。再加入pd-1/nfat-reporter-jurkat细胞。继续培养6小时后,按荧光素酶检测试剂说明书检测荧光素酶活性。以pd-l1抗体作为阳性对照,计算测试化合物的pd-1/pd-l1结合抑制率(%)=(化合物处理孔化学发光值/溶剂对照孔化学发光值平均值–1)/(pd-l1抗体孔化学发光值平均值/溶剂对照孔化学发光值平均值–1)×100%。根据上述检测方法,对本发明所述化合物进行细胞水平生物学活性评价。数据小结见下表。本发明的化合物的活性数据如下:化合物编号absoluteec50(μm)601.846610.124由上述结果可见,本发明的化合物可有效抑制pd-1和pd-l1结合,具有良好的pd-1/pd-l1结合抑制活性。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1