一种三维自旋交叉凝胶材料及制备方法和应用

文档序号:26540383发布日期:2021-09-07 21:32阅读:142来源:国知局
一种三维自旋交叉凝胶材料及制备方法和应用

1.本发明涉及一种自旋交叉配合物材料,特别涉及一种三维自旋交叉凝胶材料及制备方法和应用。


背景技术:

2.自旋交叉材料是最引人注目的双稳态材料之一,它具有在两种电子状态之间切换的能力,即在特定外界刺激条件下(如温度、压力、光辐射、客体分子等)发生过渡金属离子高、低自旋状态之间的相互转换。这种转换会伴随着一系列磁学、电子学、光学、热学等性能变化,使得它们在分子水平上的新型信息存储器件、分子开关、显示器件、探测器件等领域具有诱人的应用前景。
3.超薄二维纳米材料由于原子级厚度和二维层状结构,赋予了其独特的物理学、电子学、化学和光学性质以及广阔的应用前景。然而在实际应用中,二维材料的“面

面”堆叠极大地限制了其性能的发挥,凝胶化作为实现二维纳米材料液相三维组装的重要手段,不仅减少了二维材料的团聚,保留更多的活性位点,同时形成的三维网络结构可以提供畅通的离子电子传输通道,提升材料在信息储存器件、分子开关、显示器件等应用中的实用性。
4.对于实际应用,其中一个基本前提是在常温常压下使用简单,有效的刺激来实现自旋交叉的转换。跟热诱导自旋交叉相比,光诱导具有响应时间短、选择性高、能耗低的优点,因而更具有实用价值。只是大多数光触发开关是用高能紫外(uv)或可见(vis)光驱动的,这具有有限的穿透和侵入性的缺点。因此,高穿透性和无毒近红外(nir)光可以作为一种极好的替代品。


技术实现要素:

5.发明目的:针对现有技术中存在的问题,本发明提供了一种三维自旋交叉凝胶材料。本发明还提供了该三维自旋交叉凝胶材料的制备方法和应用,该方法操作简单、条件温和,能够在常温常压条件下,实现固体状态单分子水平上的低能量光致自旋交叉行为。本发明的材料用于信息储存,分子开关,分子显示等分子电子器件中。
6.技术方案:本发明所述的一种三维自旋交叉凝胶材料,包括pvdf、peg、二维自旋交叉配合物和镧系掺杂的上转换纳米粒子,所述二维自旋交叉配合物为[fe(1,3

bpp)2(ncs)2]2,所述的[fe(1,3

bpp)2(ncs)2]2对于pvdf的质量百分比为0.375%~6%,所述的上转换纳米粒子对于pvdf的质量百分比为0.075%~1.2%;所述的peg与pvdf的质量比为0.2~1:1~4。
[0007]
优选地,所述的镧系掺杂的上转换纳米粒子为β

nayf4:eryb、β

nayf4:hoyb、β

nayf4:tmyb或β

nayf4:pryb中的一种或多种。
[0008]
优选地,二维自旋交叉配合物对于pvdf的质量百分比为1.5%,镧系掺杂的上转换纳米粒子对于pvdf的质量百分比为0.3%;所述的peg与pvdf的质量比为0.4

0.5:2。
[0009]
最优选地,所述的peg与pvdf的质量比为0.45:2。
[0010]
优选地,所述的peg为peg

6000,所述的pvdf为pvdf

50000。
[0011]
所述的凝胶材料通过以下方法制备:将peg倒入溶剂中,超声至peg完全溶解呈透明,然后加入pvdf,搅拌至pvdf完全溶解呈透明,得到无色透明的pvdf和peg的混合溶胶;在搅拌条件下将二维自旋交叉配合物[fe(1,3

bpp)2(ncs)2]2和镧系掺杂的上转换纳米粒子加入到步骤(1)得到的pvdf/peg溶胶i中,在85

95℃温度下搅拌至分散均匀,得到溶胶ii,将溶胶ii冷却至室温,静置脱气,倒模成型。
[0012]
本发明所述的三维自旋交叉凝胶材料的制备方法,包括以下步骤:
[0013]
(1)将peg倒入溶剂中,超声至peg完全溶解呈透明,然后加入pvdf,搅拌至pvdf完全溶解呈透明,得到无色透明的pvdf和peg的混合溶胶作为pvdf/peg溶胶i,其中peg和pvdf的质量比为0.2~1:1~4;peg与溶剂的质量体积比为0.2

1g:10

30ml;
[0014]
(2)在搅拌条件下将二维自旋交叉配合物[fe(1,3

bpp)2(ncs)2]2和镧系掺杂的上转换纳米粒子加入到步骤(1)得到的pvdf/peg溶胶i中,在85

95℃温度下搅拌至二维自旋交叉配合物[fe(1,3

bpp)2(ncs)2]2和镧系掺杂的上转换纳米粒子分散均匀,得到2d@ucnps

pvdf/peg溶胶ii,所述的[fe(1,3

bpp)2(ncs)2]2对于pvdf的质量百分比为0.375%~6%,所述的上转换纳米粒子对于pvdf的质量百分比为0.075%~1.2%;
[0015]
(3)将步骤(2)所得的2d@ucnps

pvdf/peg溶胶ii冷却至室温,静置脱气,然后将溶胶ii倒入模具中成型。
[0016]
优选地,步骤(1)中,所述的溶剂为n,n

二甲基甲酰胺。
[0017]
优选地,步骤(1)中,peg的溶解条件为:在30~60℃,20~60khz条件下超声5~20min至peg完全溶解呈透明;聚偏二氟乙烯的溶解条件为:在100~500rpm下搅拌1~3h至pvdf完全溶解呈透明。
[0018]
优选地,步骤(2)中,所述的分散均匀的条件为:在100~500rpm条件下搅拌6~12h,得到溶胶ii。
[0019]
优选地,步骤(3)中,溶胶ii成型的条件为:将溶胶ii倒入直径为5mm,高为3mm的圆柱形模具中静置24小时。
[0020]
本发明所述的三维自旋交叉凝胶材料或上述制备方法所得的三维自旋交叉凝胶材料在制备分子电子器件中的应用。所述的分子电子器件包括信息储存器件、分子开关器件或分子显示器件。
[0021]
有益效果:(1)本发明提供的三维自旋交叉凝胶材料由两种聚合物pvdf以及peg、二维自旋交叉配合物和上转换纳米粒子共混而成,其制备方法简单灵活,可以应用于其他二维自旋交叉配合物体系;(2)本发明提供的三维自旋交叉凝胶材料能性能良好,无毒且能稳定存在;(3)本发明提供的三维自旋交叉凝胶材料结合了上转换纳米粒子的优点,利用低能量的近红外光触发,能够实现常温常压条件下分子水平上的多步自旋交叉行为;(4)本发明提供的三维自旋交叉凝胶材料可在环境条件下简便地实现自旋状态转换,在信息储存、分子开关、分子显示等分子电子器件方面有巨大的应用前景。
附图说明
[0022]
图1为不同时间下近红外光触发的三维自旋交叉凝胶材料2d@ucnps

pvdf/peg的固体紫外

可见吸收光谱。
具体实施方式
[0023]
实施例1:三维自旋交叉凝胶材料的制备
[0024]
(1)pvdf/peg溶胶i的制备:室温(20℃)下将0.45g聚乙二醇(peg,mw~6000)装入50ml三颈烧瓶中,向烧瓶中倒入15ml n,n

二甲基甲酰胺(dmf),在45℃,40khz条件下超声10min至peg完全溶解呈透明,然后加入2g聚偏二氟乙烯(pvdf,mw~50000),在300rpm下搅拌2h至pvdf完全溶解呈透明,得到无色透明的pvdf和peg的混合溶胶pvdf/peg溶胶i;
[0025]
(2)在300rpm的搅拌条件下将30mg二维自旋交叉配合物[fe(1,3

bpp)2(ncs)2]2(制备方法参见中国专利2018108260382)和6mg上转换纳米粒子ucnps(β

nayf4:eryb)加入到步骤(1)得到的pvdf/peg溶胶i中,搅拌1.5h,然后将烧瓶转移至90℃油浴锅中继续在300rpm条件下搅拌8h,至二维自旋交叉配合物[fe(1,3

bpp)2(ncs)2]2和上转换纳米粒子ucnps(β

nayf4:eryb)分散均匀,得到黄色透明的2d@ucnps

pvdf/peg溶胶ii;
[0026]
(3)将烧瓶取下,冷却至室温(20℃),静置脱气,然后将溶胶ii倒入直径为5mm,高为3mm的圆柱形模具中静置24小时,即可获得二维自旋交叉配合物2d和上转换纳米粒子ucnps掺杂的黄色2d@ucnps

pvdf/peg凝胶材料。
[0027]
本实施例制备的三维自旋交叉凝胶材料2d@ucnps

pvdf/peg,其中二维范德华配合物[fe(1,3

bpp)2(ncs)2]2对于pvdf的质量百分比为1.5%,上转换纳米粒子ucnps对于pvdf的质量百分比为0.3%。
[0028]
对其进行紫外

可见吸收光谱测试(光照实验所选的激光为具有310
±
5nm带通滤波器的230w hg弧光灯,波长为980nm,功率为1.5w cm
‑2),具体测试过程如下:取2d@ucnps

pvdf/peg凝胶材料2g,以间隔5min增加照射时间光照样品,在0~30min的时间范围内进行了固体紫外

可见吸收光谱测量。样品的固体紫外

可见吸收光谱随照射时间的变化如图1所示,观察到照射后,低自旋的fe(ii)的溶剂介导的配体内π

π
*
跃迁和d

d跃迁增加了,而从d(fe)
π
+π(ncs)到π*(1,3

bpp)降低了,表明了典型的nir触发的从高自旋态过渡到低自旋态,由此可知,本发明方法所得到的三维自旋交叉凝胶材料便于进行实际应用,可应用于信息储存、分子开关、分子显示等分子电子器件方面。
[0029]
实施例2:三维自旋交叉凝胶材料的制备
[0030]
(1)pvdf/peg溶胶i的制备:室温(15℃)下将0.2g聚乙二醇(peg,mw~6000)装入100ml三颈烧瓶中,向烧瓶中倒入30ml n,n

二甲基甲酰胺(dmf),在30℃,60khz条件下超声5min至peg完全溶解呈透明,然后加入4g聚偏二氟乙烯(pvdf,mw~50000),在500rpm下搅拌3h至pvdf完全溶解呈透明,得到无色透明的pvdf和peg的混合溶胶pvdf/peg溶胶i;
[0031]
(2)在100rpm的搅拌条件下将15mg二维自旋交叉配合物[fe(1,3

bpp)2(ncs)2]2(制备方法参见中国专利2018108260382)和3mg上转换纳米粒子ucnps(β

nayf4:tmyb)加入到步骤(1)得到的pvdf/peg溶胶i中,搅拌0.5h,然后将烧瓶转移至90℃油浴锅中继续在100rpm条件下搅拌6h,至二维自旋交叉配合物[fe(1,3

bpp)2(ncs)2]2和上转换纳米粒子ucnps(β

nayf4:tmyb)分散均匀,得到黄色透明的2d@ucnps

pvdf/peg溶胶ii;
[0032]
(3)将烧瓶取下,冷却至室温(15℃),静置脱气,然后将溶胶ii倒入直径为5mm,高为3mm的圆柱形模具中静置24小时,即可获得二维自旋交叉配合物2d和上转换纳米粒子ucnps掺杂的黄色2d@ucnps

pvdf/peg凝胶材料。
[0033]
本实施例中得到的三维自旋交叉凝胶材料2d@ucnps

pvdf/peg,二维范德华配合
对于pvdf的质量百分比为9%,上转换纳米粒子ucnps对于pvdf的质量百分比为1.8%。从对比例3的结果可以看出,当掺杂的2d和ucnps对于pvdf的比例高时,结果所获得的2d@ucnps

pvdf/peg凝胶材料的由于掺杂的2d@ucnps含量较高,置于空气中容易变质,稳定性降低。
[0046]
对比例4:步骤(1)和(3)与实例2相同。步骤(2)为在100rpm的搅拌条件下将5mg二维自旋交叉配合物[fe(1,3

bpp)2(ncs)2]2(制备方法参见中国专利2018108260382)和1mg上转换纳米粒子ucnps加入到步骤(1)得到的pvdf/peg溶胶i中,搅拌0.5h,然后将烧瓶转移至90℃油浴锅中继续在100rpm条件下搅拌6h,至二维自旋交叉配合物[fe(1,3

bpp)2(ncs)2]2和上转换纳米粒子ucnps(β

nayf4:tmyb)分散均匀,得到黄色透明的2d@ucnps

pvdf/peg溶胶ii;
[0047]
所得2d@ucnps

pvdf/peg凝胶材料中,二维范德华配合物[fe(1,3

bpp)2(ncs)2]2对于pvdf的质量百分比为0.125%,上转换纳米粒子ucnps对于pvdf的质量百分比为0.025%。当掺杂的2d和ucnps对于pvdf的比例较低,所获得的2d@ucnps

pvdf/peg凝胶材料在进行近红外光触发测试时,需要更高的激光密度和更长的激发时间。而过长时间的辐射会导致凝胶材料的部分融化,组分发生改变。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1