一种天然高分子基大气水收集材料及其制备方法

文档序号:26952289发布日期:2021-10-16 02:09阅读:148来源:国知局
一种天然高分子基大气水收集材料及其制备方法

1.本发明属于高分子材料技术领域,具体涉及一种天然高分子基高效大气水收集材料及其制备方法。


背景技术:

2.淡水是人类社会赖以生存和发展的基本物质之一,随着世界人口的急剧增长和水污染问题的日益严重,淡水资源紧缺己成为全球性的危机。地球大气中存在着大量的水,其含量约占总淡水资源的10%。因此,可以从大气中捕捉水蒸气,并将其转换为可饮用的纯净水,这将有利于缓解日益严重的水资源短缺问题。理想的水蒸气收集器应具有高吸收率,快速吸附/脱附能力和长期循环稳定性。传统的干燥剂(例如硅胶、沸石、吸湿盐等)由于与水之间存在较高的亲和力而首先被用于水蒸气收集。但是,硅胶和沸石的保水性能相对较低,只有约0.3~0.5 g/g。此外,高的水亲合力使水的释放变得困难,进而导致脱附过程消耗大量能源。相对较低的吸湿能力和解附所需的较高能量使硅胶和沸石不能实现高效率的大气水收集。吸湿盐可以通过水合作用来收集水蒸气,但存在颗粒团聚和水合过程中颗粒表面形成钝化层的问题,这将会降低水蒸气的渗透性并使盐的吸湿能力下降。潮解性液体吸附剂在吸湿应用中的主要问题是解吸时的高能量消耗,因为在这个过程中需要对整个液体进行加热,而这种液体加热的方式会导致大量的热损失。与此同时,一些通过化学合成方法得到的气凝胶材料也被用于吸湿,但是这类材料通常需要较为复杂的制备步骤,而且成本相对较高,这在一定程度上也限制了它们的实际应用。
3.综上所述,目前传统无机干燥剂吸湿性能较低,而且较高的水亲和力使得水收集过程中需要消耗大量能源,这些因素导致其不能满足高效率的大气水收集要求,进而阻碍了在大气水收集方面的应用。
4.

技术实现要素:

5.本发明的目的是提供一种天然高分子基大气水收集材料,另一目的是提供该材料的制备方法,以弥补现有技术的不足。
6.天然高分子是以由重复单元连接成的线型长链为基本结构的高分子量化合物,这类材料通常具有来源广、循环可再生、成本低、质量轻、结构可调控和绿色环保的优点,可以用作吸湿性材料的基体。基于此,利用天然高分子制备具有高度可调控特性的新材料来实现有效的大气水收集和利用是十分有前景的。
7.为达到上述目的,本发明采取具体技术方案如下:一种天然高分子基大气水收集材料,该材料以天然高分子作为基体,经过交联得到内部呈中空、表面有大量大孔和微孔的结构体;所述天然高分子是一类具有多糖主链和亲水性侧链的天然高分子物质;所述大孔和微孔的尺寸在微纳米级范围。
8.进一步的,所述天然高分子包括但不限于:黄原胶、刺槐豆胶、瓜尔胶、褐藻胶的一
种或多种组合。
9.所述天然高分子基大气水收集材料的中空结构和其表面大量的大孔和微孔,显著提高了其比表面积,实现了表面积的最大化,明显增大了与湿气的接触面积,从而极大地提高了吸湿速率。与此同时,中空和多孔结构的存在十分有利于水蒸气在脱附过程中进行快速的扩散和溢出,从而实现快速的解吸。此外,结合光热转换材料,充分利用取之不尽的太阳能,通过光热蒸发的形式对吸收的水进行解吸。这种方式可以将收集到的太阳能可以集中在蒸发体上,大大减少了热传导带来的能量损失,从而显著提高了能量利用效率。所述天然高分子基大气水收集材料具有良好的热稳定性和机械稳定性。
10.所述天然高分子基大气水收集材料的制备方法,包括以下步骤:(1)将天然高分子物质分散在水中加热,使其溶解,得到天然高分子溶液;然后,加入光热转换物质,通过搅拌和超声使其分散均匀得到混合悬浮液;(2)将上述配制的混合悬浮液逐滴滴加到交联剂溶液中,发生交联反应,从而得到稳定的球形结构;(3)将得到的球形结构材料继续放置于交联剂溶液中,再进行充分交联,然后除去过量的交联剂;(4)最后将经过(3)处理后的材料进行干燥,从而得到具有中空结构的天然高分子基大气水收集材料。
11.进一步的,所述(1)中,加热温度为30~100℃,使其溶解,得到浓度为1~10 wt%的溶液;然后,加入10~1000 mg的光热转换物质;所述搅拌和超声具体为:搅拌速度为100~1000 r/min,搅拌时间为10~60 min,超声功率为50~300 w,超声时间为10~30 min。
12.进一步的,所述(1)中,所述的光热转换物质选取碳粉、聚吡咯、聚苯胺、碳纳米管、石墨烯或金属等离子体等中的一种。
13.进一步的,所述(2)中,所述交联剂选择氯化锂、硫酸锂、硫酸钙、氯化钙中的一种;优选氯化锂,所述氯化锂溶液的浓度为5~42.5 wt%。
14.进一步的,所述(3)中通过抽滤,使用无水乙醇对得到的样品进行冲洗,以除去过量的交联剂;所述无水乙醇还可以使用丙酮、甲醇、异丙醇进行替代。
15.进一步的,所述(4)中干燥处理方式具体为:真空干燥箱中干燥24~48小时,真空度为0.05~0.1 mpa,温度为30~100℃。
16.进一步的,将制备的天然高分子基大气水收集材料放置于相对湿度分别为10~90%的环境中进行水蒸气的收集,获得相应的吸湿性能。
17.进一步的,将吸湿后的材料放置于光照下通过光热蒸发的方式进行水的解吸,获得相应的水脱附性能,光照强度为1~10 kw/m2。
18.本发明的优点和技术效果:本发明制备得到的天然高分子基大气水收集材料具有内部中空结构,而且其表面伴有大量的微/纳米孔结构,非常有利于水蒸气的吸收、凝结和渗透,从而实现了高效率的大气水收集。且在吸湿测试中发现,90%的相对湿度下材料的吸湿能力高达7.6 g/g,远超传统干燥剂的吸湿性能(< 1.0 g/g)。此外,这种结构的存在十分有利于解吸时水蒸气的快速扩散和溢出,从而实现快速的水脱附。结合光热转换材料,通过光热蒸发的形式对吸收的水进行解吸,可以将收集到的太阳能可以集中在蒸发体上,显著提高能量利用效率。经过多次
吸湿/解吸测试后,发现该材料具有良好的循环稳定性。
19.本发明以通过引入天然高分子,提高吸湿性材料的可加工性,获得高孔隙的微/纳米结构以促进水的扩散和运输,从而实现水分子的快速吸附/脱附。
附图说明
20.图1为实施例1中空结构的卡拉胶基复合材料的扫描电镜图。
21.图2为卡拉胶基复合材料的bjh(barret

joyner

halenda)孔径分布图。
22.图3为卡拉胶基复合材料的eds谱图。
23.图4为卡拉胶基复合材料的xps谱图。
24.图5为对比例1、2、3中制备的无中空结构样品的实物图。
25.图6为卡拉胶基复合材料的热失重曲线图。
26.图7为卡拉胶基复合材料的压缩应力

应变曲线图。
27.图8为通过光学显微镜观察到的卡拉胶基复合材料在吸湿过程中的变化图。
28.图9为卡拉胶基复合材料在吸湿后的拉曼谱图。
29.图10为卡拉胶基复合材料在不同相对湿度下的吸湿性能。
30.图11为卡拉胶基复合材料在90%相对湿度下的吸湿速率图。
31.图12为对比例1中无中空结构样品在不同相对湿度下的吸湿性能图。
32.图13为实施例1和对比例3中制备的有无中孔结构样品的吸湿对比图。
33.图14为卡拉胶基复合材料在蒸发解吸过程中的温度和质量变化图。
34.图15为卡拉胶基复合材料在一个太阳光下的蒸发速率图。
35.图16为卡拉胶基复合材料的吸湿

解吸循环稳定性结果图。
具体实施方式
36.以下通过具体实施例并结合附图对本发明进一步解释和说明。
37.实施例1:本实施例为一种天然高分子基大气水收集材料的制备方法,具体按以下步骤进行:一、将天然高分子卡拉胶分散在水中加热,温度为30~100℃,使其溶解,得到浓度为1~10 wt%的溶液;然后,加入10~1000 mg的碳粉,通过搅拌和超声使其分散均匀,搅拌速度为100~1000 r/min,搅拌时间为10~60 min,超声功率为50~300 w,超声时间为10~30 min。
38.二、用注射器将上述配制的混合悬浮液逐滴滴加到浓度为5~42.5 wt%的氯化锂溶液中,使其与锂离子发生交联反应,从而得到稳定的球形结构。
39.三、将得到的球形材料继续放置在氯化锂溶液中10~48小时,充分交联。然后,通过抽滤,使用无水乙醇对得到的样品进行冲洗,以除去过量的氯化锂。
40.四、将冲洗后的样品转移到真空干燥箱中干燥24~48小时,真空度为0.05~0.1 mpa,温度为30~100℃,从而得到具有中空结构和多孔表面的干燥样品,如图1a的实物图照片可以发现样品呈现明显的中空结构;图1b是样品表面的扫描电镜图,可以观察到大量的大孔,尺寸在微米范围内;图2是样品的bjh孔径分布图,直径在10纳米以下的孔较多,说明
了样品表面除了大孔外,还存在微孔结构。图3、4是样品的eds和xps谱图,从中可以发现锂元素的存在,而且是均匀分布的,充分发挥了其交联点的作用,而且也有利于水蒸气的收集。
41.实施例2:本实施方式与实施例1的不同之处是:步骤一所述的天然高分子为黄原胶、刺槐豆胶、瓜尔胶、褐藻胶中的一种或多种混合。其他步骤与具体实施例1相同。
42.实施例3:本实施方式与实施例1的不同之处是:步骤一所述的碳粉还可以是聚吡咯、聚苯胺、碳纳米管、石墨烯或金属等离子体。其他步骤与具体实施例1相同。
43.实施例4:本实施方式与实施例1的不同之处是:步骤二和步骤三所述的氯化锂还可以是硫酸锂、硫酸钙、氯化钙的一种或两种混合物。其他步骤与具体实施例1相同。
44.实施例5:本实施方式与实施例1的不同之处是:步骤三所述的无水乙醇还可以是丙酮、甲醇、异丙醇。其他步骤与具体实施例1相同。
45.对比例1:本实施方式与实施例1的不同之处是:步骤四所述的真空干燥箱改用电热鼓风干燥箱,制备出的材料呈收缩的碟状,不具有中空结构,如图5a所示。其他步骤与具体实施例1相同。
46.对比例2:本实施方式与实施例1的不同之处是:经过步骤一、二、三制备的样品放入

55℃的冰柜中2小时,然后转移到冷冻干燥机中24小时,制备出的材料呈现碟状,不具有中空结构,如图5b所示。其他步骤与具体实施例1相同。
47.对比例3:本实施方式与实施例1的不同之处是:步骤一所述的卡拉胶改用海藻酸钠,制备出的样品呈现不规则片状结构,不具有中空结构,如图5c所示。其他步骤与具体实施例1相同。
48.性能测试:对实施例1制备的样品通过热失重分析仪进行热稳定性测试,结果如图6所示,样品的质量变化发生在200℃,表明其较好的热稳定性。此外,还利用拉伸/压缩设备测试了实施例1中制备样品的机械性能,如图7所示,样品的应力、应变数值均高于没有进行金属离子交联的对比样品,说明其机械性能得到了有效提升。在吸湿实验测试中,称取一定量样品放置于表面皿中,然后将其转移到恒温恒湿箱中,设置温度为20℃,相对湿度分别为35、60和90%,进行水蒸气的收集。通过图8中的光学显微镜照片可以发现,在吸湿过程中,水珠逐渐由小变大,越来越多。图9的拉曼光谱出现了多组峰,表明了吸湿后样品同时具有自由水和结合水,这也有利于水的快速解吸。在水收集的过程中,定时称取样品质量,计算得到相应的吸湿数据,结果如图10所示。经过10个小时的吸湿,在35%和60%的相对湿度下,样品吸湿量已经达到饱和;而对于90%的相对湿度,吸湿速率超过6 g/g,而且仍在上升,24小时后达到7.6 g/g,如图11所示。与此同时,测试了对比例1制备样品在不同湿度下的吸湿性能,如图12所示,该样品在经过10个小时后并没有达到吸湿平衡,说明其吸湿速率较慢,而且相对应的吸湿性能远低于实施例1中制备的样品。另外,对实施例1和对比例3中制备的样品在90%相对湿度下进行了吸湿对比测试,结果如图13 所示。可以发现在整个吸湿过程中,实施例1制备的kc/licl样品的吸湿速率显著高于对比例3制备的sa/licl,这进一步证明了本发明产品优秀的吸湿性能。如图14所示,在通过光热蒸发进行水的解吸过程中,样品的温度逐渐升高,最高可以达到65℃,较高的温度有利于水的快速脱附。在整个过程中,还可以观察到有超过90%的吸附水发生了解吸,这表明该材料具有优异的水脱附行能。通过计算可以得
到光热蒸发的速率,如图15所示,在一个太阳光下可以达到1.22 kg m

2 h
−1。此外,通过吸湿

解吸测试验证了实施例1制备样品的循环稳定性,在经过多次吸湿

解吸循环测试后,发现该材料仍然保持了较好的吸湿性能,结果如图16所示,这就表明其具有良好的循环使用稳定性。
49.结果分析:实施例1制备的吸湿性材料具有中空结构,而且伴有大量的微/纳米孔,这十分有利于水蒸气的吸收、凝结和渗透,从而实现了高效率的大气水收集。与此同时,中空和多孔结构的存在十分有利于水蒸气在脱附过程中进行快速的扩散和溢出,从而实现快速的解吸。通过测试表现该材料热分解温度发生在200℃以上,表明其具有优异的热稳定性,保证了光热蒸发的进行。在压缩实验中,该材料的压缩强度可以达到约60 kpa,说明了其良好的机械稳定性。此外,在吸湿测试中发现,90%的相对湿度下材料的吸湿能力高达7.6 g/g,远超传统干燥剂的吸湿性能(< 1.0 g/g)。
50.由上述说明了,本发明制备得到的天然高分子基大气水收集材料具有显著优于现有技术的吸湿性能,能够作为吸湿材料进行大气水收集。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1