一种基于离子传导的高性能热电水凝胶的制备方法及应用

文档序号:28329944发布日期:2022-01-05 02:57阅读:569来源:国知局
一种基于离子传导的高性能热电水凝胶的制备方法及应用

1.本发明属于高分子热电水凝胶及其制备和应用领域,特别涉及高性能热电水凝胶的制备方法及应用。


背景技术:

2.据统计,工业生产中超过一半的能量以热能的形式被浪费是空气中,若能够合理的收集这些废热,将会产生巨大的经济效益。基于塞贝克效应,传统的电子/空穴型热电材料由于能够将热能直接转换为电能而备受关注,然而这些热电材料的塞贝克系数低,热电转换效率低,无法满足实际的应用。近些年,离子型热电材料具有较高的热电势,热电系数是传统电子/空穴型热电材料的几百倍甚至上千倍,能够借助离子传导实现高效热电转换。其中主要分为两类,一类是利用温差下离子定向迁移的浓度差引起熵变实现热电转换,即热扩散效应(thermodiffusion effect)。然而,当温差稳定以后,离子迁移逐渐与外电路电子迁移达到平衡,将不再产生电流,因此,热扩散效应无法实现持续的供电。另一类是利用氧化/还原反应过程中的熵变实现热电转换,即氧化/还原电对的温度效应,即热电化学效应(thermogalvanic effect)。然而目前已报道的大都是液态形式的热电化学电池,存在体积大、柔性差、不可便携的缺点。
3.高分子水凝胶由于具有极好的柔性、可拉伸性、可调节的导电性、良好的自愈性以及生物相容性,在软体机器人、可穿戴电子、健康监测等领域展现出巨大的应用前景。通过在高分子水凝胶中引入氧化还原电对,有望设计一种新型的柔性可拉伸高性能热电材料。目前已报道的这类研究中,通过引入氧化还原电对fe(cn)
63

/k4fe(cn)
64

或者fe
2+
/fe
3+
,获得的塞贝克系数大都在1.0~2.0mv/k范围内,电导率较差,难以直接驱动日常的小型电子器件。此外,其机械性能包括拉伸性、循环稳定性都相对较差,归一化的输出功率密度较低(大都不超过1.0mw/m2k2)。因此,需要开发一种具有高塞贝克系数、高电导率、高拉伸性、高稳定性、高输出功率密度的热电水凝胶,有望利用温差发电直接驱动led、电子温度计等小功率的电子器件。


技术实现要素:

4.本发明所要解决的技术问题是提供一种高性能热电水凝胶的制备方法,同时提供了该高分子热电水凝胶制备方法及应用,通过结构设计与调控,提高热电水凝胶的热电性能、拉伸性、稳定性以及输出功率密度。
5.本发明提供一种高性能热电水凝胶的制备方法,所述高分子热电水凝胶主要由热引发引起丙烯酰胺(acrylamide,简称aam)单体的聚合,并与海藻酸钠(sodium alginate,简称sa)分子交联互穿后形成双网络高分子水凝胶,然后在铁氰化钾(k3fe(cn)6,简称k3fcn)、亚铁氰化钾(k4fe(cn)6,简称k4fcn)和盐酸胍(guanidine hydrochloride,简称gh)三者混合液中浸泡后获得。
6.本发明的一种高性能热电水凝胶及器件,其制备方法包括:
7.(1)将丙烯酰胺(aam)和海藻酸钠(sa)按照一定的比例加入到去离子水中,加热搅拌至完全溶解,然后冷却至室温;
8.(2)将一定含量的n,n

二甲基双丙烯酰胺(n,n

dimethylbisacrylamide,简称bis)和过硫酸铵(ammonium persulfate,简称aps)加入到步骤(1)的混合溶液中,在室温下搅拌均匀至完全溶解;
9.(3)将步骤(2)的均匀溶液倒入模具中,然后放进烘箱,加热至完全固化,得到可拉伸的聚丙烯酰胺(paam)水凝胶。
10.(4)步骤(3)得到的paam水凝胶切成所需的尺寸,并将其放入铁氰化钾(k3fcn)、亚铁氰化钾(k4fcn)、盐酸胍(gh)的混合水溶液中,浸泡一段时间后取出,即得到本发明所述的基于离子传导的高性能热电水凝胶。
11.(5)将热电水凝胶切成一定尺寸的条形,铂片作为电极连接热电水凝胶的左右两端,即得到高分子水凝胶热电器件。
12.所述步骤(1)中,所述aam与去离子水的质量比为1:20~1:3,所述sa与去离子水的质量比为1:100~1:20,加热温度为50

90℃,搅拌时间为1

6h。所述步骤(2)中,所述bis与去离子水的质量比为1:2000~1:200,所述aps与去离子水的质量比为1:2000~1:200,室温下搅拌1

6h。所述步骤(3)中温度为60

90℃,时间为0.5

3h。所述步骤(4)中,k3fecn和k4fecn的浓度为0.05

0.4mol/l,gh浓度为0.5

4mol/l,热电水凝胶浸泡时间为1

6h。
13.本发明提供一种所述方法制备的高性能热电水凝胶。
14.本发明提供一种所述高性能热电水凝胶的应用,如温差发电、散热降温、热电可穿戴等领域。
15.有益效果是:
16.(1)本发明的制备方法简单易行,具有大批量生产的潜力;
17.(2)本发明的高性能热电水凝胶具有良好的热电性能和机械性能;
18.(3)本发明基于高性能热电水凝胶的柔性热电器件,在温差发电、散热降温、热电可穿戴领域具有良好的应用前景。
附图说明
19.图1为实施例1中制备的paam水凝胶及其力学性能,其中图1a中

为未浸泡的水凝胶、

为在铁氰化钾/亚铁氰化钾溶液中浸泡后的水凝胶,图1b为
①②
对应的断裂应变曲线,图1c为未浸泡水凝胶

的拉伸光学照片,图1d为浸泡铁氰化钾/亚铁氰化钾溶液后水凝胶

的拉伸光学照片;
20.图2a为实施例1中所制备的三种水凝胶的光学图片(图2a),

为在铁氰化钾/亚铁氰化钾/盐酸胍溶液中浸泡后的热电水凝胶。图2b为热电水凝胶

在常温以及经液氮处理5分钟后的断裂应变曲线;
21.图3为实施例1中制备热电水凝胶

的电学性能和机械性能,其中图3a为不同温度下的电导率,图3b为500周期的200%循环应变测试;
22.图4为热电水凝胶的工作原理示意图;
23.图5为实施例1中制备的水凝胶在不同浓度盐酸胍溶液(铁氰化钾/亚铁氰化钾浓度为0.3mol/l)中浸泡后的塞贝克系数和电导率图片;
24.图6为实施例1中优化的热电水凝胶稳定性测试,温差为20k,其中图6a为不同应变下的电压和塞贝克系数,图6b为循环温差20k下的电压稳定性测试;
25.图7为实施例1中优化热电水凝胶不同温差下的热电性能,图7a为不同温差下的电压

电流密度以及输出功率密度曲线,图7b为不同温差下的最大输出功率密度以及对应的归一化功率密度(即比功率密度);
26.图8为实施例2中制备的水凝胶在不同浓度铁氰化钾/亚铁氰化钾溶液中浸泡后的塞贝克系数和电导率图片;
27.图9为实施例3中制备的水凝胶在不同浓度铁氰化钾/亚铁氰化钾溶液(均含有1mol/l的盐酸胍)中浸泡后的塞贝克系数和电导率图片。
28.图10为利用实施例1中优化的热电水凝胶给电脑中央处理器(cpu)降温,对应的温度曲线变化,状态1:cpu表面未贴附水凝胶,状态2:cpu表面贴附水凝胶。水凝胶尺寸为3cm
×
3cm
×
2mm,cpu尺寸为3cm
×
3cm。
具体实施方式
29.下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本技术所附权利要求书所限定的范围。
30.本发明中丙烯酰胺和盐酸胍购买于上海麦克林生化科技有限公司,海藻酸钠和过硫酸铵购买于天津普瑞思生物科技有限公司,n,n

二甲基双丙烯酰胺购买于天津渤化化学试剂有限公司,铁氰化钾购买于天津希恩思奥普德科技有限公司,亚铁氰化钾购买于天津市海铭威商贸有限公司。
31.实施例中所涉及到的测试方法:用自主搭建的测试装置测试热电水凝胶的塞贝克系数。采用低压电源和商业的peltier加热模块控制样品左右两端的温差,用keithley 2450数据采集系统测量热电泡沫两端的开路电压,同时用热电偶测量水凝胶左右两端的实时温度,得到温差,并计算塞贝克系数。本发明实施例中设计的热电水凝胶,以长方形结构为例,有效长度为2cm,宽为1cm,厚2mm,金属铂片作为电极与热电水凝胶两端相连,采用keithley 2450测量热电水凝胶左右两端的电阻,根据热电水凝胶的长度、电阻、截面积,计算其电阻率,并换算成电导率。热电水凝胶的拉伸应变测试由万能试验机测试系统实现,并与keithley 2450系统连接,实时记录所有电信号。
32.实施例1:
33.本发明热电水凝胶及器件的制备方法如下:
34.(1)将2.2g丙烯酰胺(aam)和0.14g海藻酸钠(sa)加入到7.5g去离子水中,在80℃下加热搅拌2h至完全溶解,然后冷却至室温;
35.(2)将3.8mg n,n

二甲基双丙烯酰胺(bis)和7.5mg过硫酸铵(aps)加入到步骤(1)的混合溶液,在室温下搅拌2h;
36.(3)将步骤(2)的均匀溶液倒入模具中,然后放进60℃的烘箱,2h后取出得到高强度、超拉伸的聚丙烯酰胺(paam)水凝胶。
37.(4)将步骤(3)得到的水凝胶放入0.3m铁氰化钾/0.3m亚铁氰化钾/3.0m盐酸胍的
混合水溶液中,浸泡6h后取出,即得到本发明所述的高性能热电水凝胶。
38.(5)将步骤(4)中热电水凝胶切成长4cm
×
1cm的条形,1cm
×
1cm的铂片作为电极连接热电水凝胶的左右两端,即得到相应的高分子水凝胶热电器件,中间有效长度为2cm。
39.图1展示了实施例1中制备的水凝胶及其力学性能,从图中可以看出所制备的水凝胶是透明的,未浸泡的水凝胶拉伸应变高达1600%,经过在铁氰化钾/亚铁氰化钾溶液中浸泡后,水凝胶也是透明的(呈现黄色),拉伸应变有所降低,仍表现出约为1000%的超高拉伸性能;
40.图2为实施例1中所制备的三种水凝胶的光学对比图片,通过结合图1,可以看出,在铁氰化钾/亚铁氰化钾/盐酸胍溶液中浸泡后,热电水凝胶的颜色进一步加深,透明度降低。在室温下的拉伸应变可达540%,经液氮处理5分钟后,其拉伸性能仍高到200%以上;
41.图3为实施例1中优化的热电水凝胶在不同温度下的电导率变化曲线,从图3a可以看出,从

60℃到10℃,电导率增加了近1000倍,对应电导率从0.01增加到10s/m,当温度为60℃时,电导率约为17.3s/m。同时表现出良好的循环性能,图3b所示,经过为500周期的200%循环应变测试,该热电水凝胶表现出良好的循环稳定性;
42.图4为实施例1中热电水凝胶的工作原理,可以看出在热端和冷端分别发生氧化反应(fe(cn)
63+

e


fe(cn)
64+
)、还原反应(fe(cn)
64+
+e


fe(cn)
63+
);
43.图5为实施例1中制备的水凝胶在不同浓度盐酸胍溶液(铁氰化钾/亚铁氰化钾浓度为0.3mol/l)中浸泡后的塞贝克系数和电导率图片。可以看出,随着盐酸胍浓度增加,热电水凝胶的电导率和塞贝克系数均先逐渐增大后降低,当盐酸胍浓度为2.0mol/l时,热电水凝胶表现出最佳的热电性能,平均塞贝克系数约为4.4mv/k,电导率约为10.5s/m;
44.图6为实施例1中优化热电水凝胶的稳定性测试,温差为20k,其中图6a为不同应变下的电压和塞贝克系数,可以看出,随着应变的增加,热电水凝胶的电压和塞贝克系数没有明显的变化,表现出良好的稳定性;图6b为在循环温差20k下的电压稳定性测试,经过11个小时的循环工作,热电电压没有明显的变化,可以看出该热电水凝胶具有优异的热电稳定性;
45.图7为实施例1中优化热电水凝胶不同温差下的热电性能,热电水凝胶的低温端控制在20度,温差分别20k,30k,40k,50k,最大输出功率密度为4839mw/m2。可以看出,随着温差的增加,热电水凝胶最大输出功率密度也逐渐增加,归一化的最大输出功率密度约为1.7mw/m2k2,远高于目前已报道的基于热电化学效应的其他凝胶类热电材料。
46.实施例2:
47.本发明热电水凝胶及器件的制备方法如下:将实施例1中步骤(4)的浸泡液变为0.05~0.4mol/l的铁氰化钾/亚铁氰化钾溶液,其余步骤与实施例1相同,制备5组热电水凝胶。
48.通过测试计算,图8给出了实施例2中制备的5组热电水凝胶在不同浓度铁氰化钾/亚铁氰化钾溶液中浸泡后的塞贝克系数和电导率,可以看出,随着铁氰化钾/亚铁氰化钾的浓度增加,热电水凝胶的电导率逐渐增加,从2.16增加到5.56s/m,塞贝克系数略有降低从1.66降到1.46mv/k。
49.实施例3:
50.本发明热电水凝胶及器件的制备方法如下:在实施例2的基础上,在5种铁氰化钾/
亚铁氰化钾溶液中分别加入1mol/l的盐酸胍,以此作为浸泡液,其余步骤与实施例2相同。
51.通过测试计算,图9给出了实施例3中制备的5组热电水凝胶在不同浓度铁氰化钾/亚铁氰化钾/(1mol/l盐酸胍)溶液中浸泡后的塞贝克系数和电导率,可以看出,随着铁氰化钾/亚铁氰化钾的浓度增加,热电水凝胶的电导率逐渐增加,从2.27增加到10.2s/m,塞贝克系数先增加后降低,当铁氰化钾/亚铁氰化钾的浓度为0.3mol/l时,热电水凝胶的塞贝克系数最大,为4.28mv/k,此时的电导率为9.96s/m。
52.需要进一步说明的是,通过制备简单、易操作的上述制备过程,本发明制备的热电水凝胶具有优异的热电性能和机械性能。在0%~200%的拉伸应变范围内,平均塞贝克系数为4.4mv/k左右,经过500次的200%拉伸应变循环,本发明制备的热电水凝胶仍表现出优异的热电性能和循环稳定性。在50k的温差下,最大输出功率密度约为4839mw/m2,归一化的最大功率密度(p
max
/δt2)高达1.7mw/m2k2,为目前已报道该体系凝胶类热电材料的最高值。利用本发明制备的热电水凝胶通过可穿戴设计,能够将人体热能转换为电能。此外,将尺寸为3cm
×
3cm
×
2mm的热电水凝胶贴附在尺寸为3cm
×
3cm的cpu上,除了能够实现温差发电,还能够给cpu降温(图10所示),运行12分钟,未贴附水凝胶膜的cpu温度高达76℃,见图中状态1。当cpu表面一开始就贴附水凝胶,cpu的整个升温过程都低于前者,温降最高可达15℃,见图中状态2。
53.并且本发明原料中:(1)单体aam替换为但不限于聚乙烯醇(pva)、聚丙烯酸(paa)或聚n

异丙基丙烯酰胺(pniaam),制备得到相应高分子水凝胶;(2)海藻酸钠替换为但不限于明胶、壳聚糖或锂藻土等易水解的材料;(3)交联剂bis替换为酰胺类材料,包括但不限于n

异丙基丙烯酰胺、n,n

二甲基丙烯酰胺;或者无机纳米材料,包括但不限于氧化石墨烯(go)、mxene。(4)引发剂aps替换为但不限于过硫酸钾(kps),或者过氧化二甲苯酰胺、偶氮二异丁腈常见的有机引发剂。(5)本发明所述的单体聚合引发方式包括但不限于热引发、光引发,或利用加速剂实现室温下的聚合反应。(6)氧化还原电对k3fe(cn)6/k4fe(cn)6替换为能够实现可逆氧化还原反应的氧化还原电对,包括但不限于fe
2+
/fe
3+
、co
2+
/co
3+
或i3‑
/i

。其各替代材料采用本发明制备方法得到的产品,取得与本发明实施例相同的技术效果。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1