一种生物质基芳香醇的快速合成方法

文档序号:30957807发布日期:2022-07-30 11:00阅读:261来源:国知局
一种生物质基芳香醇的快速合成方法

1.本发明涉及一种芳香醇的合成方法,具体为一种生物质基芳香醇的快速合成 方法。


背景技术:

2.随着传统化工行业对不可再生矿物燃料的过度开发和利用,伴随而来的能源 枯竭和环境污染等问题促使人类探索和开发可再生能源。生物质作为最丰富的有 机碳资源,在制造生物燃料和有价值的化学品方面显示出相当大的潜力。据报道, 腐烂真菌分泌的木质素过氧化物酶能有效降解大多数典型造成环境污染的内分 泌干扰物。藜芦醇作为木质素衍生物之一,是许多白腐真菌产生的小代谢分子, 能够显著提高木质素过氧化物酶活性。除此之外,糠醇就是一种很重要的高附加 值的化合物,糠醇可以用于生产树脂、燃料、合成纤维、橡胶、塑料、农药等。 因此,开发一种高效的方法来制备生物基芳香醇是非常必要的。
3.生物质衍生物是富氧有机碳原料,在价格昂贵和量身定制的金属催化剂的前 提下,可部分或完全氢化成各种高选择性的增值分子。对于芳香醛加氢反应,贵 金属(例如:au、pt和ru)和过渡金属(例如:cu、co和mo)作为非均相或均相 催化剂在供氢过程中具有良好的活性和选择性。然而,这些金属催化剂通常价格 昂贵,制备复杂,需要使用耐压反应仪器,或可回收性差。一般来说,h2是最 常规的氢源,但通常存在存储、安全、运输等诸多问题,对条件的要求比较苛刻。 此外,使用酸(如:甲酸)或醇(如:异丙醇)作为氢供体的液相氢转移过程在所涉 及的安全和低成本过程方面受到了广泛的关注。然而,酸性氢供体对设备具有腐 蚀性,醇可进一步与芳香醇醚化,导致产物选择性在一定程度上降低。因此,需 要选择合适的供氢体,开发高效、温和的加氢反应体系。
4.羰基化合物的硅氢化反应是目前学术界和工业界广泛使用的重要方法之一。 这类转化过程非常吸引人,因为所使用的含氢硅烷不仅无毒、可生物降解、绿色、 经济,且对空气和水稳定,而且在相对温和的条件下还可被金属(例如:金、钯、 镍)或碱性金属物种(例如:cs2co3和koh)活化形成高价盐。但所用催化剂大多 为均相碱催化剂,存在分离困难、不经济、重复性差等缺点。开发一种经济型、 环境友好型和可重复使用的固体碱金属催化剂用于活化含氢硅烷进行加氢预计 将更有前途。与此相关,cao是一种碱度高、成本低、回收利用率好的固体碱土 金属氧化物,是获得生物柴油酯交换生产、氢气/合成气合成和缩合反应等大量 增值产品最有利的催化剂之一。更有意思的是,cao也可以从天然钙源如蛋壳、 骨头、贝壳中提取。然而,这些钙源通常被当作废物扔掉,造成环境污染。开发 应用于含钙废物生物质气化的功能催化剂,并采用适当的转移氢化改性方法,似 乎是缓解不利环境影响和气候恶化的一种有吸引力的方式。


技术实现要素:

5.本发明的目的在于:针对现有制备芳香醇的体系生产成本高、反应时间长、 选择
性差等弊端,选用广泛易得、绿色环保的生物质基藜芦醛为原料和dmso 作为溶剂,以二苯基硅烷作为氢源,在废弃衍生物钙基催化剂的作用下,生物质 基藜芦醛选择性转化为藜芦醇。
6.本发明的目的是通过以下技术方案实现的:
7.一种生物质基芳香醇的快速合成方法,以生物质基芳香醛为底物、以二苯基 硅烷为氢源,dmso为溶剂,在废弃衍生物改基催化剂的作用下,活化硅氢生 成高价盐;带负电荷的高价盐活化醛上的c=o形成硅氧烷中间体;最后,在水 的作用下,si-o键断裂,形成最终产物芳香醇。
8.本发明合成生物质基芳香醇的原理:醛类化合物在加热条件下发生硅氢化反 应,首先催化剂活化硅氢生成高价盐;带负电荷的高价盐活化醛的c=o形成硅 氧烷中间体;最后,在水的作用下,si-o键断裂,形成最终产物芳香醇。反应 式如下:
[0009][0010]
所述的r2芳香环为苯基、取代苯基、呋喃、噻吩或吡啶,其中取代苯基上 的取代基包括甲氧基和甲基
[0011]
进一步地,烯烃的制备在耐压管中进行,反应体系为密闭体系,反应温度为25~100℃,反应时间为5min~4h。
[0012]
进一步地,所述的废弃物衍生钙基催化剂与硅氧烷和生物质基芳香醛的摩尔 比为1:5:5~5:1:1。
[0013]
进一步地,所述的生物质基芳香醛类化合物为藜芦醛、糠醛、肉桂醛、5
‑ꢀ
甲基糠醛或苯甲醛。
[0014]
进一步地,所述的芳香醇为藜芦醇、糠醇、肉桂醇、5-甲基糠醇或苯甲醇。
[0015]
进一步地,所述的催化转移氢化反应包括:将生物质基芳香醛类化合物溶于 dmso中,以硅烷为氢源,在废弃衍生物钙基催化剂作用下,于25~100℃反应 5min~4h得到相应的醇类化合物。
[0016]
进一步地,所述的废弃衍生物钙基催化剂包含鸡蛋壳、骨头或贝壳,经过 清洗,烘干和马弗炉中400~1000℃温度范围内在空气中煅烧1~4h制备 cao催化剂;向装有磁子、温度计和回流冷凝器的圆底烧瓶中加入摩尔 比为1:5~11:40~100的cao、甘油和甲醇的混合液,加热至60~120℃ 下搅拌6~10h;所得沉淀经离心和甲醇洗涤后干燥,即获得了废弃物衍 生钙基催化剂。
[0017]
生物质基芳香醇的制备在配备有磁力搅拌的油浴锅中的耐压管中进行,设定 指定反应温度后,反应体系快速升温至指定反应温度。
[0018]
所述的藜芦醇的制备过程为:将藜芦醛、催化剂、溶剂、硅氢和作为内标的 萘加入到15毫升的耐压管中,将反应釜密封并置于油浴中后设定反应时间。反 应停止后,加入1ml水淬灭反应。液体混合物在定性和定量分析前用滤膜(孔 径:0.22微米)过滤。液体样品通
过气相色谱-质谱进行鉴定,所有产品通过气相 色谱进行分析。
[0019]
本发明中,在25~100℃的低温下,硅氧烷是主要的中间体,特别是在反应 的初始阶段。催化剂碱位点活化硅氢在此期间起着重要作用。此外,加入1毫升 水,硅氧烷中的si-o可以断裂得到最终的产物藜芦醇。在25℃反应1小时后, 以99.6%的产率生成藜芦醇,藜芦醛转化率为99.8%,检测到了接近100%的碳 平衡。从以上数据可以推断,该转移加氢反应策略在制备藜芦醇的工艺中具有良 好的产率,显示出其在生物质原料高效热转化中的潜在应用前景。
[0020]
所述的转移加氢反应包括:藜芦醛溶于dmso中,于25~100℃反应5min~ 4h得到藜芦醇,二苯基硅烷作氢源。与高压釜中使用氢气作为氢源相比,转移 加氢的优点是在较温和的压力下反应相对更安全。同时设备要求不高,使用的氢 源廉价易得。因此,筛选了氢源,包括苯基硅烷、二苯基硅烷,三乙基硅烷、三 甲氧基硅烷、三乙氧基硅烷、聚甲基氢硅氧烷、1,1,3,3-四甲基二硅氧烷。尽管其 它硅氢也能还原藜芦醛,但所获得的藜芦醇选择性不能与苯基硅烷和二苯基硅烷 相比。从经济性和反应活性角度考虑,选择二苯基硅烷作为后续加氢反应的氢源。
[0021]
本发明的有益效果:
[0022]
本发明方法以生物质基芳香醛类化合物为底物、以二苯基硅烷氢源、dmso 作为溶剂,在废弃物衍生钙基催化剂(鸡蛋壳衍生催化剂、骨头衍生催化剂、贝 壳衍生催化剂)的作用下,生物质基芳香醛类化合物(藜芦醛、糠醛、肉桂醛、 5-甲基糠醛、苯甲醛等)高选择性氢化为相应的醇类化合物(藜芦醇、糠醇、肉 桂醇、5-甲基糠醇、苯甲醇等)的方法。
[0023]
反应工艺简单,制备废弃物衍生钙基催化剂,在温和的反应条件下使用生物 质基芳香醛高选择性氢化为醇。
[0024]
催化剂活性具有较高碱含量和疏水性,散度好、活性高、选择性高;与传统 的催化体系相比,反应条件温和,目标产物选择性得到显著提高,其中生物质基 藜芦醛的转化率至少可达到99.8%,藜芦醇产率可达到99.6%。
[0025]
与均相催化剂相比,该催化剂具有较高的稳定性,重复使用五次转化率和产 率及热重损失均无明显变化。
[0026]
本发明解决了现有生产芳香醇催化效率低,催化剂制备过程困难,用量多和 稳定性差,反应需要高温高压及长时间的问题,提高了生产体系的安全性和经济 性。在催化剂的作用下,在25~100℃温度范围内,可以实现生物质基芳香醛选 择性氢化为醇。使用过的催化剂经过简单离心和煅烧处理后就可以直接重复使用, 实现了催化剂的循环利用。
附图说明:
[0027]
图1为实施例1藜芦醇的质谱;
[0028]
图2为实施例1中藜芦醇在不同温度和反应时间下鸡蛋壳衍生催化制备藜芦 醇的产率图;
[0029]
图3为实施例1中藜芦醇在不同硅氢下鸡蛋壳衍生催化制备藜芦醇的产率图;
[0030]
图4为实施例1中藜芦醇在不同溶剂下鸡蛋壳衍生催化制备藜芦醇的产率 图;
[0031]
图5为实施例1中藜芦醇在不同催化剂用量下鸡蛋壳衍生催化制备藜芦醇的 产率图。
具体实施方式:
[0032]
下面结合实施例对本发明的技术方案作进一步的详细说明,但它们不是对本 发明的限定。
[0033]
实施例1:生物质基藜芦醇的快速合成方法
[0034]
将藜芦醛(0.5mmol)、鸡蛋壳衍生催化剂(1.8mol%)、溶剂dmso(2ml)、 氢源二苯基硅烷(1.1倍当量h-)和作为内标的萘(0.015g)加入到15毫升的耐 压管中,反应器密封并置于已升至指定温度的油浴锅中后设定反应时间。反应停 止后,加入1ml水淬灭反应。液体混合物在定性和定量分析前用滤膜(孔径:0.22 微米)过滤过滤并加入3ml无dmso稀释,再通过气相色谱-质谱(安捷伦6890 氮气相色谱/5973质谱)进行鉴定,所有产品通过气相色谱(安捷伦7890b)使 用配备火焰离子化检测器(fid)的hp-5色谱柱(30米
×
0.320毫米
×
0.25微米) 进行分析。基于萘作为内标的标准曲线,通过gc(气相色谱)测定得到藜芦醛 转化率(99.8%)和藜芦醇的产率(99.6%)。
[0035]
实施例2:废弃物衍生钙基催化剂的制备
[0036]
收集废弃鸡蛋壳、贝壳或骨头,用去离子水洗涤3~5次,以消除附着的灰尘 和杂质;人工取出壳膜,用蒸馏水再次清洗内表面的一些粘稠有机物质;清洗后 放在80~100℃的烘箱中8~10h烘干;然后在马弗炉中400~1000℃温度范围内在 空气中煅烧1~3h制备cao催化剂。向装有磁子、温度计和回流冷凝器的圆底烧 瓶中加入摩尔比为1:9:80的cao、甘油和甲醇的混合液,加热至60~100℃下 搅拌6~10h。所得沉淀经离心和甲醇洗涤后干燥,即获得了废弃物衍生钙基催化 剂。
[0037]
实施例3:生物质基藜芦醇的快速合成方法
[0038]
将催化剂换成骨头衍生催化剂(1.8mol%),其它同实例1。测定得藜芦醛转 化率(97.4%),藜芦醇的产率为95.4%。
[0039]
实施例4:
[0040]
将催化剂换为贝壳衍生催化剂(3.6mol%),其它同实例1。测定得藜芦醛转 化率(95.4%),藜芦醇的产率为93.5%。
[0041]
实施例5
[0042]
将原料换为糠醛(0.5mmol),反应时间缩短至15min,温度为45℃,其它 同实例1。测定糠醛转化率为(98.2%),对糠醇的产率为97.4%。
[0043]
实施例6:
[0044]
将原料换为肉桂醛(1mmol),反应时间增加至0.5小时,其它同实例1。测 定得肉桂醛转化率为(92.3%),肉桂醇的产率为90.2%。
[0045]
实施例7:
[0046]
将原料换为5-甲基糠醛(1.5mmol),反应时间增加至1小时,温度为45℃, 其它同实例1。测定得5-甲基糠醛转化率为(94.9%),5-甲基糠醇的产率为93.1%。
[0047]
实施例8:
[0048]
将原料换为苯甲醛(2mmol),反应时间增加至2小时,温度为60℃其它同 实例1。测定得苯甲醛转化率为(99.4%),苯甲醇的产率为99%。
[0049]
实施例9:
[0050]
将原料换为噻吩甲醛(2mmol),反应时间增加至3小时,温度为80℃,其 它同实例
1。测定得噻吩甲醛转化率为(99%),噻吩甲醇的产率为97%。
[0051]
实施例10:
[0052]
将原料换为吡啶-2-甲醛(2mmol),反应时间增加至4小时,温度为100℃, 其它同实例1。测定得吡啶-2-甲醛转化率为(99%),吡啶-2-甲醇的产率为98%。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1