一种短肽元件及其应用方法与流程

文档序号:31226500发布日期:2022-08-23 19:44阅读:296来源:国知局
一种短肽元件及其应用方法与流程

1.本发明属于生物技术领域,尤其涉及一种短肽元件及其应用方法。


背景技术:

2.胰高糖素样肽-1(glucagon-like peptide-1,glp-1)是一种主要由肠道l细胞所产生的激素。作为一种肠源性激素,glp-1以葡萄糖浓度依赖的方式作用于glp-1受体,增强胰岛素分泌,抑制胰高糖素分泌,同时通过中枢性的食欲抑制减少进食量,从而达到降低血糖作用。glp-1受体激动剂是近年发展的新型降糖药物,低血糖风险低,安全性高,同时兼具减重、降压、降脂功能,使心血管获益。
3.天然glp-1极易被体内的二肽基肽酶4(dpp-4)降解,血浆半衰期不足2分钟,极大限制了glp-1的临床应用。通过开发新型glp-1受体激动剂,让其既保有glp-1的功效,又能抵抗ddp4降解,从而延长半衰期。目前市场上开发的glp-1受体激动剂有很多种,如利拉鲁肽,索马鲁肽、杜拉鲁肽、艾塞那泰等。其中索马鲁肽利用非天然氨基酸替换glp-1活性片段中第8位(ala)氨基酸降低了dpp4对该位点的识别能力,同时偶联一段脂肪酸侧链,使其可以与血液内白蛋白结合,进一步抵抗dpp4降解,同时通过增加分子量避免被肾脏清除,从而延长药物作用时间,实现了长效控释。
4.目前glp-1及其类似物的生产主要有化学法和生物法两类方法。
5.化学固相法方面,目前glp-1及其类似物的合成大多是采用化学固相多肽合成的方法来生产,如cn 102875665,cn 110078816 a,cn 110372785 a等,化学固相多肽合成方法需要大量使用有机溶剂,存在环境污染严重,收率低,成本高的缺点,同时,在glp-1及其类似物化学固相合成过程中,每个循环均会产生一定数量的消旋异构体,后期异构体纯化难度较大,更为重要的是glp-1及其类似物的化学固相多肽合成中容易形成二级结构,导致合成困难。
6.与化学固相法相比,生物法不需要大量使用有机溶剂,生产过程中不会产生消旋等问题,因此,生物法成为了glp-1及其类似物生产的主要手段,生物法生产glp-1及其类似物的方法目前主要有酵母表达系统和大肠杆菌表达系统,其中酵母表达系统在表达小分子量蛋白质或者多肽过程中由于酵母自身分泌蛋白酶的降解作用,会导致表达失败或者表达量低等问题,需要对酵母细胞进行基因敲除获得基因缺陷型菌株,该方法筛选基因缺陷型菌株工作量和难度较大。
7.大肠杆菌表达系统由于其表达量高,没有额外修饰,操作简单等特点,受到了越来越多的重视,glp-1及其衍生物由于片段较短,直接大肠杆菌表达系统表达困难,所以,表达策略基本采用融合蛋白加酶切的手段实现glp-1及其类似物的生产。其中中国专利cn106434717a公开了一种采用分子伴侣加酶切位点加glp-1及其类似物融合蛋白可溶性表达方法,通过收集表达上清,硫酸铵沉淀,离子交换,酶切和离子交换等步骤,获得纯度大于90%的glp-1类似物。
8.又如,中国专利cn104098702a公开了一种采用mfh加甲酸水解为点加亲和纯化位
点加酶切位点加glp-1类似物融合蛋白可溶性表达方法,通过收集表达上清,乙醇沉淀,甲酸水解,亲和纯化、酶切和反相色谱纯化等步骤,获得纯度为99%的glp-1类似物。
9.又如,文献《利拉鲁肽在大肠杆菌中的表达、制备工艺研究及活性分析》公开了一种ksi加酶切位点加glp-1类似物融合蛋白包涵体表达方法,通过收集表达包涵体,溶解,酶切和反相色谱纯化等步骤,获得了glp-1类似物。
10.以上大肠杆菌表达系统制备glp-1类似物的方法,都采用融合一个较大分子量蛋白生产融合蛋白的方法,导致glp-1类似物在融合蛋白中占比较低,glp-1类似物的最终收率都比较低。


技术实现要素:

11.针对现有大肠杆菌生产glp-1及其类似物生产中收率不高的问题,为了实现glp-1及其类似物的高回收率,本发明提出一种短肽元件加酶切位点加glp-1及其类似物融合蛋白表达策略,通过降低前导序列在融合蛋白中的比重,显著提高glp-1及其类似物在融合蛋白中所占有的比例,提高glp-1及其类似物的收率,同时,把融合蛋白表达在包涵体中,为后期glp-1及其类似物生产工艺简化操作流程、缩减操作步骤,降低生产成本创造条件。
12.为了实现以上策略,本发明通过前导序列重构,提供一种基于组蛋白碱性短肽元件融合疏水短肽元件用于glp-1及其类似物的生产,所述的融合蛋白结构组成为x-y-d4k-z模式;其中 x为镍亲和标签加疏水短肽元件,增强融合蛋白疏水性,促进包涵体形成,提高包涵体表达量;y为组蛋白碱性亲水短肽元件,提高融合蛋白的等电点和酶切效率;d4k 为肠激酶酶切位点;z为glp-1及其类似物。本发明通过大肠杆菌融合蛋白包涵体表达,融合蛋白的溶解、酶切和纯化等技术路线,实现了glp-1及其类似物的高效生产,生产过程中全程不需要使用有机溶剂,减少了环境污染,降低了生产成本,为后期的药物生产提供便利。
13.在x-y-d4k-z结构中,所述的x疏水短肽元件选自组蛋白或者白介素中的疏水序列。
14.具体地,组蛋白疏水短肽序列来源于人组蛋白h2b和h3;其中,来源于人h2b的序列如下:mhhhhhhisskamgimnsfvndiferi;mhhhhhhitsreiqtavrlllpge;mhhhhhhlakhavsegtkavtkytss。
15.其中,来源于h3的序列如下:mhhhhhhirklpfqrlvreiaqd。具体地,白介素疏水短肽序列来源于各种白介素;其中,来源于人il-2的序列如下:mhhhhhhalslavtnsaptssstkktqlqlehllldlqmilnnyknpkltrmltfkfymp。
16.其中来源于人il-7的序列如下:mhhhhhhiegkdgkqyesvlmvsidqlld。
17.其中来源于人和小鼠il-6的共有序列如下:mhhhhhhrqpltsseridkqiryildgisa。
18.其中来源于人和小鼠il-10共有序列如下:
mhhhhhhfpgnlpnmlrdlrdafsrv。
19.其中来源于小鼠il-15的序列如下:mhhhhhhkteanwvnvisdlkkiedliqs。
20.其中来源于小鼠il-21的序列如下:mhhhhhhksspqgpdrllirlrhlidive。
21.其中来源于小鼠il-2的序列如下:mhhhhhhlvviflgtvahksspqgpdrllirlrhlidiveqlkyendlppellsapqdvkg。
22.进一步地,x疏水短肽序列优选如下序列:mhhhhhhisskamgimnsfvndiferi;mhhhhhhirklpfqrlvreiaqd;mhhhhhhrqpltsseridkqiryildgisa;mhhhhhhkteanwvnvisdlkkiedliqs;mhhhhhhksspqgpdrllirlrhlidive。
23.在x-y-d4k-z结构中,所述的y组蛋白碱性亲水短肽元件选自组蛋白的碱性亲水序列。
24.具体地,来源于小鼠组蛋白h2a碱性亲水序列如下:karakaksrssraglqf。
25.具体地,来源于小鼠组蛋白h2b碱性亲水序列如下:kaqkkdgkkrkrsrkesy。
26.具体地,来源于小鼠组蛋白h3碱性亲水序列如下:kaarksapatggvkkphry。
27.具体地,来源于小鼠组蛋白h4碱性亲水序列如下:kggakrhrkvlrdniqgi。
28.进一步地,y组蛋白碱性亲水短肽序列优选如下序列:karakaksrssraglqf;kaarksapatggvkkphry。
29.最优地,y组蛋白碱性亲水短肽序列优选来源于h2a的碱性亲水短肽亲水序列。
30.进一步地,x疏水短肽元件加y组蛋白碱性亲水短肽元件优化组合为:mhhhhhhisskamgimnsfvndiferikarakaksrssraglqf;mhhhhhhirklpfqrlvreiaqdkarakaksrssraglqf;mhhhhhhfpgnlpnmlrdlrdafsrvkarakaksrssraglqf;mhhhhhhkteanwvnvisdlkkiedliqskarakaksrssraglqf;mhhhhhhksspqgpdrllirlrhlidivekarakaksrssraglqf。
31.所述的z为glp-1类似物,包括glp-1(7-37),glp-1(7-37, k34r),glp-1(9-37, k34r), glp-1(11-37, k34r)。
32.具体地,本发明提供的融合蛋白序列包括seq id no.1-seq id no.20。
33.进一步地,本发明提供的融合蛋白序列优选seq id no.1,seq id no.4,seq id no.6,seq id no.8,seq id no.10,seq id no.15,seq id no.16,seq id no.17,seq id no.18,seq id no.19,seq id no.20。
34.具体地,seq id no.1序列为:mhhhhhhisskamgimnsfvndiferikarakaksrssraglqfddddkegtftsdvssylegqaakefiawlvrgrg。
35.seq id no.4序列为:mhhhhhhirklpfqrlvreiaqdkarakaksrssraglqfddddkegtftsdvssylegqaakefiawlvrgrg。
36.seq id no.6序列为:mhhhhhhfpgnlpnmlrdlrdafsrvkarakaksrssraglqfddddkegtftsdvssylegqaakefiawlvrgrg。
37.seq id no.8序列为:mhhhhhhksspqgpdrllirlrhlidivekarakaksrssraglqfddddkegtftsdvssylegqaakefiawlvrgrg。
38.seq id no.10序列为:mhhhhhhkteanwvnvisdlkkiedliqskarakaksrssraglqfddddkegtftsdvssylegqaakefiawlvrgrg。
39.seq id no.15序列为:mhhhhhhksspqgpdrllirlrhlidivekarakaksrssraglqfddddkhaegtftsdvssylegqaakefiawlvrgrg。
40.seq id no.16序列为:mhhhhhhksspqgpdrllirlrhlidivekarakaksrssraglqfddddktftsdvssylegqaakefiawlvrgrg。
41.seq id no.17序列为:mhhhhhhirklpfqrlvreiaqdkarakaksrssraglqfddddhaegktftsdvssylegqaakefiawlvrgrg。
42.seq id no.18序列为:mhhhhhhirklpfqrlvreiaqdkarakaksrssraglqfddddktftsdvssylegqaakefiawlvrgrg。
43.seq id no.19序列为:mhhhhhhfpgnlpnmlrdlrdafsrvkarakaksrssraglqfddddktftsdvssylegqaakefiawlvrgrg。
44.seq id no.20序列为:mhhhhhhkteanwvnvisdlkkiedliqskarakaksrssraglqfddddktftsdvssylegqaakefiawlvrgrg。
45.本发明的第二个方面,提供了一个核苷酸序列,在一个具体实施例中,该核苷酸序列编码一个融合蛋白。
46.本发明的第三个方面,提供了一个表达载体,在一个具体实施例中,该表达载体包括上述核苷酸序列。
47.本发明的第四个方面,提供了一个工程菌,在一个具体实施例中,该工程菌表达上述融合蛋白。
48.本发明和现有技术相比,具有如下优点:本发明构建x-y-d4k-z融合蛋白模式生产glp-1及其类似物的方法,x疏水短肽元件加y碱性短肽元件能够极大促进融合蛋白包涵体表达,并且能够提高融合蛋白的肠激酶酶切效率;同时,本发明提供的融合蛋白中glp-1类似物占比显著高于现有生产技术,能够提高glp-1类似物的收率;该方案工艺流程简单,易于工业放大,不需要使用有机溶剂,有利于环境保护。
附图说明
49.图1为实施例1融合蛋白诱导表达筛选图;图2为seq id no.4、seq id no.17、seq id no.16包涵体sds-page图;图3为seq id no.4酶切后亲和层析图;图4为seq id no.4亲和层析后流穿样品离子交换图;图5为seq id no.4制备的glp-1(9-37,k34r)rp-hplc检测图;图6为seq id no.4制备的glp-1(9-37,k34r)质谱图;图7为seq id no.17制备的glp-1(7-37,k34r)rp-hplc检测图;图8为seq id no.17制备的glp-1(7-37,k34r)质谱图;图9为seq id no.16制备的glp-1(11-37,k34r)rp-hplc检测图;图10为seq id no.16制备的glp-1(11-37,k34r)质谱图。
具体实施方式
50.以下将结合具体实施例对本发明做进一步说明,这些实施例仅作为例证,而不作为本发明的保护范围。
51.下列实施例中未注明具体条件的实验方法,通常按照常规条件,如《分子克隆实验指南》 (第四版,主编:m.r 格林,j.萨姆布鲁克;主译:贺福初)中所述的条件,或按照生产商所建议的条件。所采用的试剂,若无特殊说明,均为市售或公开渠道可以获得的试剂。
52.本发明实施过程中,挑选seq id no.1进行分子构建以及表达实施方案过程的表述。
53.实施例1:融合蛋白工程菌构建与表达:融合蛋白表达载体构建:委托南京金斯瑞生物科技有限公司合成相关基因,然后或按照《分子克隆实验指南》提到的操作方法,进行重叠pcr得到目的片段。然后将合成dna通过无缝克隆插入质粒载体pet-28a(+)的ncoi/bamhi酶切位点之间,并对起始密码子atg与rbs的间距进行调整,后将其转化到大肠杆菌bl21(de3)中进行扩增,用菌落pcr的方法筛选正确质粒,后经测序,显示基因序列为编码seq id no.1所示的氨基酸序列。
54.诱导表达筛选:将上述获得的正确的单克隆菌种转移到lb液体培养基中,37℃,220 rpm,加入适量iptg,诱导3h,收菌,取相同体积菌体,离心收集上清和沉淀,沉淀加入适量的溶解液稀释到和上清相同的体积,上清和沉淀分别加入上样缓冲液,95 ℃加热5 min,每个样品取相同
量进行sds page电泳。结果如图1所示,其中第1道为大肠杆菌空白菌作阴性对照,第二道为人组蛋白h2a与glp-1(9-37,k34r),没有诱导出融合蛋白表达,第3道为seq id no.1,第4道为seq id no.2,第5道为seq id no.3,第6道为seq id no.4,第7道为seq id no.5,第8道为seq id no.6,第9道为seq id no.7,第10道为seq id no.8,第11道为seq id no.9,第12道为seq id no.10,第13道为seq id no.11,第14道为marker,seq id no.1~seq id no.11全部诱导表达出了融合蛋白,说明这些设计均能够应用到目标融合蛋白的表达生产。考虑到seq id no.4和seq id no.8序列较短,glp-1类似物的含量更高,所以选择seq id no.4和seq id no.8中短肽元件作为后续glp-1类似物的制备。
55.实施例2:工程菌的构建:依据seq id no.4、seq id no.16、seq id no.17融合蛋白序列构建pet-28a(+)-seq id no.4、pet-28a(+)-seq id no.16、pet-28a(+)-seq id no.17表达载体,质粒转化至大肠杆菌bl21(de3)中,筛选克隆,获得工程菌,工程菌进行诱导表达,收集菌体,高压均质机破碎,离心收集沉淀和上清,进行sds-page检测,结果如图2所示,发现融合蛋白表达在不可溶性包涵体中,证实x-y短肽元件有利于包涵体的形成,并且包涵体蛋白中主要为目标蛋白。
56.实施例3:glp-1及其类似物的制备:实施例2制备的包涵体经过两次洗涤后,回收包涵体。将洗涤后的包涵体按照质量体积比为1:40比例加入到溶解缓冲液中,调节ph为8.0-12,溶解30分钟后进行变复性。复性后的包涵体溶液调节ph至适合肠激酶酶解的区间,加入肠激酶,在室温下酶解12-24小时,即可得到glp-1及其类似物骨架蛋白、标签和连接肽的混合液。混合液进行镍柱亲和层析(图3所示为glp-1(9-37, k34r)亲和层析),收集流穿液,流穿液进行离子交换层析(图4所示为glp-1(9-37, k34r)离子交换),两步纯化即可获得目的蛋白。对洗脱的目的glp-1(9-37, k34r)蛋白样品,进行分析检测,每升发酵液收获glp-1(9-37, k34r)0.95g,检测目的蛋白的纯度为93.8%,结果如图5所示。质谱检测分子量[m+1]=3175.220da(结果如图6所示),与glp-1(9-37, k34r)理论分子量一致。对洗脱的glp-1(7-37, k34r)蛋白样品,进行分析检测,每升发酵液收获glp-1(9-37, k34r)0.86g,检测目的蛋白的纯度为97%,如图7所示。质谱检测单同位素分子量[m+1]=3382.760da(结果如图8所示),与glp-1(7-37, k34r)理论分子量一致。对洗脱的glp-1(11-37, k34r)蛋白样品,进行分析检测,每升发酵液收获glp-1(9-37, k34r)0.91g,检测目的蛋白的纯度为95.3%,结果如图9所示。质谱检测单同位素分子量[m+1]=2988.639da(结果如图10所示),与glp-1(11-37, k34r)理论分子量一致。以上三个目的蛋白酶切后的整体收率均达到90%以上。
[0057]
以上内容是结合优选的实施方式进行的具体说明,对于本发明所属技术领域的技术人员,在本发明的技术思路上所作的改变、修饰、替代、组合、简化,均应视为等效的置换方式,都应当视为本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1