一种止血材料的制备方法与流程

文档序号:31198800发布日期:2022-08-20 01:12阅读:248来源:国知局
一种止血材料的制备方法与流程

1.本发明涉及高分子材料,更具体地涉及一种止血材料的制备方法。


背景技术:

2.外科手术局部出血、组织粘连是一种常见的临床现象,如果没有及时采取措施,有可能导致严重的并发症,危及患者的生命安全。
3.目前临床上使用的局部止血材料主要有止血纱布、止血纤维、止血绷带等。由于这些材料都不能被组织吸收,止血时间较长,止血效果较差。这些材料与伤口易发生粘连,伤口容易感染等,因不能及时止血、伤口感染而丧生的案例屡见不鲜。快速而有效的止血不仅能减轻伤者的痛苦,甚至关键的时刻能挽救一个人的生命。国内一些新的止血产品如壳聚糖止血贴、明胶海绵、胶原蛋白海绵止血贴等,这些产品还是存在对创伤的粘附性较差、有些适用范围较窄、止血时间较长等缺陷。因此,开发出一种具有快速止血效果的止血材料是十分必要的。
4.水凝胶是一种能够吸收溶剂(如水)、快速膨胀而不明显溶解,并保持能够可逆变形的三维网络的材料,具有优秀的止血功能。
5.现有技术中的水凝胶的制备通过聚乙二醇衍生物交联形成,其中的聚乙二醇(peg,polyethylene glycol)的化学结构为ho-(ch2ch2)
n-oh,是相对分子质量在200~8000及8000以上的乙二醇高聚物的总称。聚乙二醇是迄今为止已知聚合物中被蛋白和细胞吸收水平最低的聚合物,对人体无毒无害无刺激,具有良好的生物相容性,从聚乙二醇出发,通过化学合成反应在其特定分子端精确引入反应活性强的基团,可制成聚乙二醇衍生物。通过聚乙二醇衍生物交联形成水凝胶,其采用交联剂在高温下交联。研究表明聚乙二醇衍生物交联后被制成固体材料,其生物相容性好,生物可吸收性,能满足伤口愈合的需求,能促进创面迅速愈合,是比较理想的止血材料。
6.但是,交联过程中使用的交联剂属于毒性物质,而且后续难以完全除去。


技术实现要素:

7.为了解决上述现有技术中的水凝胶的制备过程中所使用的交联剂难以完全除去等问题,本发明提供一种止血材料的制备方法。
8.根据本发明的止血材料的制备方法一种止血材料的制备方法,其包括如下步骤:s1,将多臂聚乙二醇-sg(即多臂-聚乙二醇的-琥珀酰亚胺戊二酸酯)溶解于酸性水溶液中得到第一溶液,将多臂聚乙二醇-sh(即多臂-聚乙二醇-巯醇)溶解于氯化钠溶液中得到第二溶液;s2,混合第一溶液和第二溶液,使得多臂聚乙二醇-sg和多臂聚乙二醇-sh交联得到水凝胶;以及s3,低温冷冻干燥水凝胶,得到的固态材料作为止血材料。
9.优选地,步骤s1中的多臂聚乙二醇-sg为4臂琥珀酰亚胺戊二酸酯、或8臂聚乙二醇琥珀酰亚胺戊二酸酯。
10.优选地,步骤s1中的多臂聚乙二醇-sg的分子量为10-20万道尔顿。
11.优选地,步骤s1中的酸性溶液的ph介于3-4之间。
12.优选地,步骤s1中的酸性溶液为磷酸溶液,磷酸盐缓冲液,盐酸溶液,硫酸溶液。
13.优选地,步骤s1中的多臂聚乙二醇-sh为4臂聚乙二醇巯醇、或8臂聚乙二醇巯醇。
14.优选地,步骤s1中的多臂聚乙二醇-sh的分子量为10-20万道尔顿。
15.优选地,步骤s1中的氯化钠溶液的质量浓度介于0.9%-3%之间。
16.优选地,步骤s2中的交联时间不小于10min。在优选的实施例中,交联时间介于10-60min之间。如此,使得交联度不小于90%。
17.优选地,步骤s2中的多臂聚乙二醇-sg与多臂聚乙二醇-sh的质量比介于0.95-1.05:l之间。在优选的实施例中,步骤s2中的多臂聚乙二醇-sg与多臂聚乙二醇-sh的质量比为1:l。
18.优选地,步骤s3中的低温冷冻干燥包括:慢速预冻,升华温度低于-20℃,形成白色固态材料。应该理解,该固态材料可被处理成片状、薄膜状、块状或纤维状,以便于临床使用。
19.优选地,该制备方法还包括:s4,固态材料暴露于生理流体时发生膨胀。
20.优选地,步骤s4中的膨胀率为50%~400%。
21.根据本发明的止血材料的制备方法,室温下交联,采用对生物友好的ph调节剂,无毒性交联剂,而且得到的水凝胶作为止血材料具有优秀的溶胀度。
附图说明
22.图1是根据本发明的实施例1的多孔止血白色材料的sem扫描电镜图。
具体实施方式
23.下面结合附图,给出本发明的较佳实施例,并予以详细描述。
24.实施例1
25.将0.5g分子量为10万道尔顿的四臂聚乙二醇-sg溶解于ph=3的磷酸溶液中,将0.5g分子量为10万道尔顿四臂聚乙二醇-sh溶解于0.9%的氯化钠水溶液中,两种溶液混合至完全交联,低温冷冻干燥得到多孔止血白色材料,其sem扫描电镜图如图1所示,可以看出本发明的多孔止血白色材料为网状孔隙的疏松多孔结构。
26.实施例2
27.将0.5g分子量为20万道尔顿的四臂聚乙二醇-sg溶解于ph=4的磷酸二氢钠缓冲溶液中,将0.5g分子量为20万道尔顿四臂聚乙二醇-sh溶解于3%的氯化钠水溶液中,两种溶液混合至交联度不低于90%,低温冷冻干燥得到多孔止血白色材料。
28.实施例3
29.将0.2g分子量为10万道尔顿的四臂聚乙二醇-sg溶解于ph=3的盐酸溶液中,将0.2g分子量为20万道尔顿八臂聚乙二醇-sh溶解于1%的氯化钠水溶液中,两种溶液混合至交联度90%,低温冷冻干燥得到多孔止血白色材料。
30.实施例4
31.将0.3g分子量为10万道尔顿的八臂聚乙二醇-sg溶解于ph=3的硫酸溶液中,将0.3g分子量为20万道尔顿四臂聚乙二醇-sh溶解于1%的氯化钠水溶液中,两种溶液混合至
交联度90%,低温冷冻干燥得到多孔止血白色材料。
32.实施例5
33.将0.2g分子量为10万道尔顿的四臂聚乙二醇-sg溶解于ph=3的硫酸溶液中,将0.2g分子量为20万道尔顿八臂聚乙二醇-sh溶解于2%的氯化钠水溶液中,两种溶液混合至完全交联,低温冷冻干燥得到多孔止血白色材料。
34.实施例6
35.将0.2g分子量为20万道尔顿的八臂聚乙二醇-sg溶解于ph=4的盐酸溶液中,将0.2g分子量为20万道尔顿八臂聚乙二醇-sh溶解于1%的氯化钠水溶液中,两种溶液混合至完全交联,低温冷冻干燥得到多孔止血白色材料。
36.通过在约37℃下将冷冻干燥的水凝胶浸入牛血中约30秒来进行血液溶胀测试,并通过测量浸入血液中之前和之后的重量的差异来测量溶胀的百分比,相关数据见下表1。
37.表1实施例peg-sg(g)peg-sh(g)最终厚度(mm)牛血中的溶胀%10.50.52.66295620.50.52..83361730.20.21.56355240.30.31.86361450.20.21.76366060.20.21.702813
38.溶胀性是指凝胶吸收液体后体积明显增大,水凝胶具有网状孔隙结构,在水中可显著溶胀,膨胀率介于50%~400%之间。由牛血中的溶胀%可以看出,本发明制备的水凝胶,具有优秀的溶胀度。
39.以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1