一种自修复聚氨酯材料、双层自修复聚氨酯薄膜及其制备方法和应用

文档序号:31181237发布日期:2022-08-17 10:59阅读:454来源:国知局
一种自修复聚氨酯材料、双层自修复聚氨酯薄膜及其制备方法和应用

1.本发明涉及聚氨酯材料技术领域,尤其涉及一种自修复聚氨酯材料、双层自修复聚氨酯薄膜及其制备方法和应用。


背景技术:

2.随着现代科学技术的不断进步与发展,全球对于功能卓越的聚合物材料的需求逐年增强。聚氨酯作为一类新兴的高分子材料,具有优异的耐磨、耐臭氧、耐低温及耐腐蚀性等优点,在航空航天、汽车、纺织、建筑、医疗、智能检测等领域具有广泛的应用前景。自修复材料可实现损伤后的自我修复,在一定时间后恢复其原有的结构和功能,可有效延长材料的使用寿命,提高材料的使用安全性,降低材料的维护成本以及减少资源浪费。现如今,通过将自修复能力引入到聚合物材料中,已经成为了高分子材料发展的新趋势。对于这类具有自修复功能的聚合物材料而言,当其受到机械或功能性损伤后,能够在一定条件下恢复到原始状态或接近原始状态,以实现延长材料使用寿命、降低维护成本的目的。
3.近年来,自修复聚氨酯材料因其可回收性和广阔的应用前景而备受关注。然而,目前自修复聚氨酯材料普遍存在力学性能与自修复性能难以同时兼具这一问题,限制了其在汽车涂层、可穿戴电子设备、软体机器人、柔性电子、生物医学等领域的实际应用。


技术实现要素:

4.本发明的目的在于提供一种自修复聚氨酯材料、双层自修复聚氨酯薄膜及其制备方法和应用,基于本发明提供的自修复聚氨酯材料可以制备得到具有较好自修复能力以及力学性能的双层自修复聚氨酯薄膜。
5.为了实现上述发明目的,本发明提供以下技术方案:
6.本发明提供了一种自修复聚氨酯材料,包括分装的第i聚氨酯材料和第ii聚氨酯材料;
7.所述第i聚氨酯材料的制备原料包括第i多元醇基体材料、第i二异氰酸酯、第i锡基催化剂、t型扩链剂和第i扩链剂,所述第i多元醇基体材料、第i二异氰酸酯、第i锡基催化剂、t型扩链剂和第i扩链剂的摩尔比为(10~20):(20~40):(1~3):(2~8):(8~12);
8.所述第ii聚氨酯材料的制备原料包括第ii多元醇基体材料、第ii二异氰酸酯、第ii锡基催化剂、t型扩链剂、金属盐和第ii扩链剂,所述第ii多元醇基体材料、第ii二异氰酸酯、第ii锡基催化剂、t型扩链剂、金属盐和第ii扩链剂的摩尔比为(10~20):(20~40):(1~3):(5~10):(2.5~10):(5~10);所述金属盐中金属离子为zn
2+
、cu
2+
、fe
3+
和ni
2+
中的一种或几种;
9.所述第i多元醇基体材料和第ii多元醇基体材料独立地为聚酯多元醇或聚醚多元醇;
10.所述t型扩链剂具有式a所示结构:
[0011][0012]
优选地,所述第i多元醇基体材料和第ii多元醇基体材料的分子量独立地为1000~2000g/mol。
[0013]
优选地,所述第i二异氰酸酯和第ii二异氰酸酯独立地包括六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯或二苯基甲烷二异氰酸酯。
[0014]
优选地,所述第i锡基催化剂和第ii锡基催化剂为二月桂酸二丁基锡。
[0015]
优选地,所述第i扩链剂和第ii扩链剂独立地包括聚醚胺d230、1,4-丁二醇、乙二醇或丙二醇。
[0016]
本发明提供了一种双层自修复聚氨酯薄膜,包括设置在基材表面的软层聚氨酯薄膜以及设置在所述软层聚氨酯薄膜表面的硬层聚氨酯薄膜,所述软层聚氨酯薄膜由上述技术方案所述自修复聚氨酯材料中第i聚氨酯材料制备得到,所述硬层聚氨酯薄膜由上述技术方案所述自修复聚氨酯材料中第ii聚氨酯材料制备得到。
[0017]
优选地,所述软层聚氨酯薄膜和硬层聚氨酯薄膜的厚度独立地为0.3~0.6mm。
[0018]
本发明提供了上述技术方案所述双层自修复聚氨酯薄膜的制备方法,包括以下步骤:
[0019]
将包含第i多元醇基体材料、第i二异氰酸酯和第i锡基催化剂的料液进行第i预聚反应,得到第i预聚产物体系;将所述第i预聚产物体系与t型扩链剂的溶液混合,进行第i-i扩链反应,得到第i-i扩链产物体系;将所述第i-i扩链产物体系与第i扩链剂混合,进行第i-ii扩链反应,得到第i聚氨酯材料;
[0020]
将包含第ii多元醇基体材料、第ii二异氰酸酯和第ii锡基催化剂的料液进行第ii预聚反应,得到第ii预聚产物体系;将所述第ii预聚产物体系与t型扩链剂的溶液混合,进行第ii-i扩链反应,得到第ii-i扩链产物体系;将所述第ii-i扩链产物体系与金属盐溶液混合,进行配位反应,得到配位产物体系;将所述配位产物体系与第ii扩链剂混合,进行第ii-ii扩链反应,得到第ii聚氨酯材料;
[0021]
在基材的表面涂覆所述第i聚氨酯材料,经第i干燥得到软层聚氨酯薄膜;在所述软层聚氨酯薄膜的表面涂覆所述第ii聚氨酯材料,经第ii干燥得到硬层聚氨酯薄膜,在所述基材的表面形成双层自修复聚氨酯薄膜。
[0022]
优选地,所述配位反应的温度为40~60℃,时间为5~12h。
[0023]
本发明提供了上述技术方案所述双层自修复聚氨酯薄膜或上述技术方案所述制备方法制备得到的双层自修复聚氨酯薄膜在保护涂层、可穿戴电子设备、软体机器人、柔性电子或自修复电极中的应用。
[0024]
本发明提供了一种自修复聚氨酯材料,包括分装的第i聚氨酯材料和第ii聚氨酯材料,基于所述第i聚氨酯材料可以制备软层聚氨酯薄膜,基于所述第ii聚氨酯材料可以制备硬层聚氨酯薄膜,二者复合可以形成双层聚氨酯薄膜,在具有较高自修复效率的同时还具有卓越的机械强度,克服了传统自修复聚氨酯材料自修复效率与力学性能难以同时兼具
这一问题。具体的,本发明采用的t型扩链剂(upy-ampd)可自组装形成四重氢键,将其引入软层聚氨酯薄膜和硬层聚氨酯薄膜中,可实现有效的能量耗散和键的断裂以及重组,从而使材料在室温下具有优异的自修复合性能和可拉伸性能;同时,本发明将金属盐引入硬层聚氨酯薄膜中,即向所述硬层聚氨酯薄膜中引入金属配位键作用,基于聚合物体系网络结构中的四重氢键和金属配位键(upy基团与金属离子形成金属配位)协同作用,可以有效地限制聚合物体系中分子链段的运动,并增强链段的结晶度与网络密度,有效调节聚氨酯材料的自修复合性能,并赋予聚氨酯材料卓越的强度,从而实现对软层聚氨酯薄膜有效的保护,实际使用过程中将软层聚氨酯薄膜作为内层,将硬层聚氨酯薄膜作为外层,“内软外硬”结合最终得到兼具良好机械性能与自修复能力的双层自修复聚氨酯薄膜,且无需任何外加条件和特定环境要求即可实现反复地快速自修复。此外,本发明提供的双层自修复聚氨酯薄膜具有高透明性、耐磨性优异、耐用性好以及成本低的特点。
附图说明
[0025]
图1为本发明制备的双层自修复聚氨酯薄膜作为保护涂层应用的示意图;
[0026]
图2为制备t型扩链剂的流程图;
[0027]
图3为对比例1~2以及实施例1制备的聚氨酯薄膜的应力-应变曲线;
[0028]
图4为实施例1制备的聚氨酯薄膜不同修复时间下的应力-应变曲线;
[0029]
图5为实施例1制备的聚氨酯薄膜在带有裂纹时的自愈过程的光学显微镜图。
具体实施方式
[0030]
本发明提供了一种自修复聚氨酯材料,包括分装的第i聚氨酯材料和第ii聚氨酯材料;
[0031]
所述第i聚氨酯材料的制备原料包括第i多元醇基体材料、第i二异氰酸酯、第i锡基催化剂、t型扩链剂和第i扩链剂,所述第i多元醇基体材料、第i二异氰酸酯、第i锡基催化剂、t型扩链剂和第i扩链剂的摩尔比为(10~20):(20~40):(1~3):(2~8):(8~12);
[0032]
所述第ii聚氨酯材料的制备原料包括第ii多元醇基体材料、第ii二异氰酸酯、第ii锡基催化剂、t型扩链剂、金属盐和第ii扩链剂,所述第ii多元醇基体材料、第ii二异氰酸酯、第ii锡基催化剂、t型扩链剂、金属盐和第ii扩链剂的摩尔比为(10~20):(20~40):(1~3):(5~10):(5~10):(5~10);所述金属盐中金属离子为zn
2+
、cu
2+
、fe
3+
和ni
2+
中的一种或几种;
[0033]
所述第i多元醇基体材料和第ii多元醇基体材料独立地为聚酯多元醇或聚醚多元醇;
[0034]
所述t型扩链剂具有式a所示结构:
[0035][0036]
在本发明中,若无特殊说明,所用原料均为本领域技术人员熟知的市售商品或本
领域技术人员熟知的方法制备得到。
[0037]
在本发明中,所述第i聚氨酯材料的制备原料包括第i多元醇基体材料、第i二异氰酸酯、第i锡基催化剂、t型扩链剂和第i扩链剂,所述第i多元醇基体材料、第i二异氰酸酯、第i锡基催化剂、t型扩链剂(记为第一t型扩链剂)和第i扩链剂的摩尔比为(10~20):(20~40):(1~3):(2~8):(8~12),优选为(10~15):(20~30):(1~2):(2~8):(8~10),具体可以为10:20:1:2:8或10:20:1:8:8。在本发明中,所述第i多元醇基体材料为聚酯多元醇或聚醚多元醇,所述聚酯多元醇优选包括聚丁二醇(ptmg)、聚己内酯二醇(pcl)、聚乙二醇(peg)或聚碳酸酯二醇(pcdl);所述聚醚多元醇优选为聚四氢呋喃二醇(ptmg)。在本发明中,所述第i多元醇基体材料的分子量优选为1000~2000g/mol,更优选为1000~1500g/mol。在本发明中,所述第i二异氰酸酯优选包括六亚甲基二异氰酸酯(hdi)、异佛尔酮二异氰酸酯(ipdi)或二苯基甲烷二异氰酸酯(mdi);所述第i锡基催化剂优选包括二月桂酸二丁基锡(dbtdl);所述第i扩链剂优选包括聚醚胺d230、1,4-丁二醇(bdo)、乙二醇或丙二醇。在本发明中,所述t型扩链剂具有式a所示结构,即带有2-脲基-4-嘧啶酮单元的双羟基封端的t型扩链剂(upy-ampd),其可自组装形成四重氢键,可实现有效的能量耗散和键的断裂以及重组,从而使材料在室温下具有优异的自修复合性能和可拉伸性能。
[0038]
在本发明中,所述第ii聚氨酯材料的制备原料包括第ii多元醇基体材料、第ii二异氰酸酯、第ii锡基催化剂、t型扩链剂、金属盐和第ii扩链剂,所述第ii多元醇基体材料、第ii二异氰酸酯、第ii锡基催化剂、t型扩链剂(记为第二t型扩链剂)、金属盐和第ii扩链剂的摩尔比为(10~20):(20~40):(1~3):(5~10):(2.5~10):(5~10),优选为(10~15):(20~30):(1~2):(5~7):(2.5~5):(5~7),具体可以为10:20:1:5:5:5或10:20:1:5:2.5:5。在本发明中,所述第ii多元醇基体材料、第ii二异氰酸酯、第ii锡基催化剂和第ii扩链剂的可选范围优选与第i多元醇基体材料、第i二异氰酸酯、第i锡基催化剂和第i扩链剂一致,在此不再赘述。在本发明中,所述金属盐中金属离子为zn
2+
、cu
2+
和fe
3+
中的一种或几种;所述金属盐优选为金属盐酸盐,具体可以为zncl2、cucl2和fecl3中的一种或几种。在本发明中,上述金属离子能够与t型扩链剂(upy-ampd)中upy基团形成金属配位键,所述金属配位键与四重氢键协同作用,可以有效地限制聚合物体系中分子链段的运动,并增强链段的结晶度与网络密度,有效调节聚氨酯材料的自修复合性能,并赋予聚氨酯材料卓越的强度。
[0039]
本发明提供了一种双层自修复聚氨酯薄膜,包括设置在基材表面的软层聚氨酯薄膜以及设置在所述软层聚氨酯薄膜表面的硬层聚氨酯薄膜,所述软层聚氨酯薄膜由上述技术方案所述自修复聚氨酯材料中第i聚氨酯材料制备得到,所述硬层聚氨酯薄膜由上述技术方案所述自修复聚氨酯材料中第ii聚氨酯材料制备得到。在本发明中,所述软层聚氨酯薄膜和硬层聚氨酯薄膜的厚度优选独立地为0.3~0.6mm,更优选独立地为0.4~0.5mm。在本发明中,所述双层自修复聚氨酯薄膜适用的基材优选包括木材、金属或玻璃。
[0040]
本发明提供的双层自修复聚氨酯薄膜中,软层聚氨酯薄膜得益于聚合物链中存在的可逆的多重氢键相互作用,延伸性好且可实现室温自修复;硬层聚氨酯薄膜得益于聚合物网络结构中存在的动态可逆非共价相互作用,即多重氢键和金属配位键协同作用,具有高的拉伸强度、卓越的韧性以及较大的杨氏模量;以所述软层聚氨酯薄膜作为内层,硬层聚氨酯薄膜作为外层,得到“内软外硬”的双层自修复聚氨酯薄膜,不仅具有显著的室温自修
复能力,还具有显著增强的机械性能。
[0041]
本发明提供了上述技术方案所述双层自修复聚氨酯薄膜的制备方法,包括以下步骤:
[0042]
将包含第i多元醇基体材料、第i二异氰酸酯和第i锡基催化剂的料液进行第i预聚反应,得到第i预聚产物体系;将所述第i预聚产物体系与t型扩链剂的溶液混合,进行第i-i扩链反应,得到第i-i扩链产物体系;将所述第i-i扩链产物体系与第i扩链剂混合,进行第i-ii扩链反应,得到第i聚氨酯材料;
[0043]
将包含第ii多元醇基体材料、第ii二异氰酸酯和第ii锡基催化剂的料液进行第ii预聚反应,得到第ii预聚产物体系;将所述第ii预聚产物体系与t型扩链剂的溶液混合,进行第ii-i扩链反应,得到第ii-i扩链产物体系;将所述第ii-i扩链产物体系与金属盐溶液混合,进行配位反应,得到配位产物体系;将所述配位产物体系与第ii扩链剂混合,进行第ii-ii扩链反应,得到第ii聚氨酯材料;
[0044]
在基材的表面涂覆所述第i聚氨酯材料,经第i干燥得到软层聚氨酯薄膜;在所述软层聚氨酯薄膜的表面涂覆所述第ii聚氨酯材料,经第ii干燥得到硬层聚氨酯薄膜,在所述基材的表面形成双层自修复聚氨酯薄膜。
[0045]
本发明将包含第i多元醇基体材料、第i二异氰酸酯和第i锡基催化剂的料液进行第i预聚反应,得到第i预聚产物体系。本发明优选将第i多元醇基体材料与有机溶剂混合,在保护气氛中进行加热以去除残留水分,避免多余水分产生干扰;然后将所得第i多元醇基体材料溶液与第i二异氰酸酯、第i锡基催化剂混合,进行第i预聚反应。在本发明中,所述有机溶剂优选包括n,n-二甲基甲酰胺、n,n-二甲基乙酰胺、甲苯或四氢呋喃,所述第i多元醇基体材料与有机溶剂的用量比优选为(10~20)mmol:(15~40)ml,更优选为10mmol:(15~20)ml;所述加热的温度优选为100~120℃,更优选为110~120℃;所述加热的时间优选为1~2h,更优选为1.5~2h;本发明对提供所述保护气氛采用的保护气体种类没有特殊限定,具体可以为氮气。加热以去除残留水分后,本发明优选将所得第i多元醇基体材料溶液冷却至60~80℃,然后与第i二异氰酸酯、第i锡基催化剂混合,进行第i预聚反应。在本发明中,所述第i预聚反应的温度优选为60~80℃,更优选为70~80℃;时间优选为3~5h,更优选为3~4h;所述第i预聚反应过程中,在第i锡基催化剂作用下,第i多元醇基体材料的羟基(-oh)与第i二异氰酸酯的异氰酸酯基团(-nco)发生加成反应,形成中间包含聚酯或聚醚的二异氰酸酯。
[0046]
得到第i预聚产物体系后,本发明将所述第i预聚产物体系与t型扩链剂的溶液混合,进行第i-i扩链反应,得到第i-i扩链产物体系。在本发明中,所述t型扩链剂的溶液优选为t型扩链剂与有机溶剂混合得到,所述有机溶剂优选包括n,n-二甲基甲酰胺、n,n-二甲基乙酰胺、甲苯或四氢呋喃;所述t型扩链剂与有机溶剂的用量比优选为(2~8)mmol:(10~20)ml,更优选为(2~8)mmol:(10~15)ml;本发明优选通过调整有机溶剂的量来控制反应物的粘度,以防止凝胶。本发明优选将t型扩链剂的溶液滴加至所述第i预聚产物体系中,本发明对所述滴加的速率没有特殊限定,采用本领域技术人员熟知的滴加速率即可。在本发明中,所述第i-i扩链反应的温度优选为60~80℃,更优选为70~80℃;时间优选为2~4h,更优选为2~3h;所述第i-i扩链反应过程中,t型扩链剂末端的双羟基(-oh)将与第i预聚反应生成的预聚体两端的异氰酸酯基团(-nco)反应生成氨基甲酸酯键。
[0047]
得到第i-i扩链产物体系后,本发明将所述第i-i扩链产物体系与第i扩链剂混合,进行第i-ii扩链反应,得到第i聚氨酯材料。本发明优选将所述第i-i扩链产物体系冷却至室温(25℃),然后将所述第i扩链剂滴加至第i-i扩链产物体系中,本发明对所述滴加的速率没有特殊限定,采用本领域技术人员熟知的滴加速率即可。在本发明中,所述第i-ii扩链反应的温度优选为40~60℃,更优选为40~50℃;时间优选为3~5h,更优选为3~4h;所述第i-ii扩链反应优选在保护气氛中进行。在本发明中,所述第i-ii扩链反应过程中,第i扩链剂进一步与第i-i扩链产物体系中剩余的异氰酸酯基团(-nco)发生完全反应,最终生成聚氨酯。
[0048]
得到第i聚氨酯材料后,本发明在基材的表面涂覆所述第i聚氨酯材料,经第i干燥得到软层聚氨酯薄膜。本发明对所述涂覆的方式没有特殊限定,采用本领域技术人员熟知的方式即可,具体如喷涂或刮涂。在本发明中,所述第i干燥的温度优选为60~80℃,更优选为70~80℃;时间优选为24~48h,更优选为36~48h;所述第i干燥优选在真空以及静置条件下进行。在本发明所述第i干燥过程中,第i聚氨酯材料中有机溶剂挥发,最终得到软层聚氨酯薄膜。
[0049]
本发明将包含第ii多元醇基体材料、第ii二异氰酸酯和第ii锡基催化剂的料液进行第ii预聚反应,得到第ii预聚产物体系;将所述第ii预聚产物体系与t型扩链剂的溶液混合,进行第ii-i扩链反应,得到第ii-i扩链产物体系。在本发明中,所述第ii预聚反应以及第ii-i扩链反应的操作条件优选与所述第i预聚反应以及第i-i扩链反应的操作条件一致,在此不再赘述。
[0050]
得到第ii-i扩链产物体系后,本发明将所述第ii-i扩链产物体系与金属盐溶液混合,进行配位反应,得到配位产物体系。在本发明中,所述金属盐溶液优选为金属盐与有机溶剂混合得到,所述有机溶剂优选包括n,n-二甲基甲酰胺、n,n-二甲基乙酰胺、甲苯或四氢呋喃;所述金属盐与有机溶剂的用量比优选为(2.5~10)mmol:(5~10)ml,更优选为(2.5~5):5ml。在本发明中,所述配位反应的温度优选为40~60℃,更优选为40~50℃;时间优选为5~12h,更优选为5~8h。在本发明中,所述配位反应过程中,掺入金属盐以后,金属离子与t型扩链剂中吡啶环上的n原子发生配位作用,形成金属配位键。
[0051]
得到配位产物体系后,本发明将所述配位产物体系与第ii扩链剂混合,进行第ii-ii扩链反应,得到第ii聚氨酯材料。在本发明中,所述第ii-ii扩链反应的操作条件优选与所述第i-ii扩链反应的操作条件一致,在此不再赘述。
[0052]
得到第ii聚氨酯材料以及软层聚氨酯薄膜后,本发明在所述软层聚氨酯薄膜的表面涂覆所述第ii聚氨酯材料,经第ii干燥得到硬层聚氨酯薄膜,在所述基材的表面形成双层自修复聚氨酯薄膜。在本发明中,涂覆所述第ii聚氨酯材料的方式以及第ii干燥的操作条件优选与涂覆所述第i聚氨酯材料的方式以及第i干燥的操作条件一致,在此不再赘述。
[0053]
在本发明的实施例中,具体是将第i聚氨酯材料倒入聚四氟乙烯平板模具中进行第i干燥,得到软层聚氨酯薄膜;然后向盛放有软层聚氨酯薄膜的聚四氟乙烯平板模具中倒入第ii聚氨酯材料进行第ii干燥,在所述软层聚氨酯薄膜的表面形成硬层聚氨酯薄膜,从而得到双层自修复聚氨酯薄膜。
[0054]
本发明提供了上述技术方案所述双层自修复聚氨酯薄膜或上述技术方案所述制备方法制备得到的双层自修复聚氨酯薄膜在保护涂层、电子皮肤或自修复电极中的应用。
[0055]
图1为本发明制备的双层自修复聚氨酯薄膜作为保护涂层应用的示意图,以金属基材为例,在所述金属基材表面制备双层自修复聚氨酯薄膜(janus自修复聚氨酯薄膜),其中,软层聚氨酯薄膜作为内层,硬层聚氨酯薄膜作为外层。
[0056]
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0057]
以下实施例以及对比例中采用的t型扩链剂按照文献(r.p.sijbesma;f.h.beijer;l.brunsveld;b.j.b.folmer;j.hirschberg;r.f.m.lange;j.k.l.lowe;e.w.meijer,science 1997,278,1601;y.song,y.liu,t.qi,g.l.li,angew.chem.int.ed.2018,57,13838)中方法制备得到,反应流程图如图2所示,具体步骤如下:
[0058]
将2-氨基-4-羟基-6-甲基嘧啶与六亚甲基二异氰酸酯按摩尔比为1:6的比例加入圆底烧瓶中,并在n2气氛、100℃下搅拌24h;将得到的产物体系冷却至室温,加入正戊烷使产物沉淀,并除去多余的未反应的六亚甲基二异氰酸酯,再用正戊烷洗涤沉淀3次,并在50℃下真空干燥24h,得到异氰酸酯封端的2-脲-4[h]-嘧啶酮,记为upy-nco;
[0059]
将upy-nco、2-氨基-2-甲基-1,3-丙二醇(upy-nco与2-氨基-2-甲基-1,3-丙二醇摩尔比为1:1.56)以及无水氯仿置于装有冷凝管的圆底烧瓶中,在n2气氛、60℃条件下回流5h,得到乳白色浑浊液;将所述乳白色浑浊液进行真空抽滤、用氯仿洗涤滤饼3次,再将洗涤后所得物料溶于n,n-二甲基乙酰胺中,离心(9000r/min,10min)后取上清液,向上清液中倒入乙醚使产物沉淀,抽滤,将所得滤饼在50℃下真空干燥24h,得到白色产物为upy-ampd,即t型扩链剂。
[0060]
对比例1
[0061]
称取10.00g分子量为1000g/mol的聚丁二醇(ptmg-1000,10g,10mmol),量取15ml的n,n-二甲基乙酰胺作为溶剂,将两者混合后置于三口烧瓶中,在120℃油浴条件、n2氛围下搅拌2h,得到聚丁二醇溶液;待所述聚丁二醇溶液的温度冷却至80℃,在n2氛围中加入异佛尔酮二异氰酸酯(ipdi,4.45g,20mmol)和二月桂酸二丁基锡(dbtdl,0.063g,1mmol),在80℃条件下搅拌反应3h,得到预聚体;
[0062]
称取t型扩链剂(upy-ampd,0.796g,2mmol),量取10ml的n,n-二甲基乙酰胺作为溶剂,将upy-ampd溶于n,n-二甲基乙酰胺中,并超声处理30min,使upy-ampd完全溶解,得到upy-ampd溶液;在80℃搅拌条件下,向所述预聚体中滴加所述upy-ampd溶液,滴加完毕后在80℃条件下搅拌反应3h,得到扩链反应产物体系;
[0063]
将所述扩链反应产物体系冷却至室温(25℃),滴加聚醚胺d230(1.84g,8mmol),滴加完毕后在40℃以及n2氛围中,再继续搅拌反应4h;将所得聚氨酯材料倒入聚四氟乙烯平板模具中,在80℃、真空且保持静置条件下干燥48h,得到聚氨酯薄膜(记为spu-1),厚度为0.4mm。
[0064]
对比例2
[0065]
按照对比例1的方法制备得到预聚体;
[0066]
称取t型扩链剂(upy-ampd,1.99g,5mmol)),量取20ml的n,n-二甲基乙酰胺作为溶
剂,将upy-ampd加入n,n-二甲基乙酰胺中,并超声处理30min,使upy-ampd完全溶解,得到upy-ampd溶液;在80℃搅拌条件下,向所述预聚体中滴加所述upy-ampd溶液,滴加完毕后在80℃条件下搅拌反应3h,得到扩链反应产物体系;
[0067]
称取zncl2固体(0.68g,5mmol),量取5ml的n,n-二甲基乙酰胺作为溶剂,将zncl2加入n,n-二甲基乙酰胺中,并超声处理30min,使zncl2完全溶解,得到zncl2溶液;在40℃搅拌条件下,向所述扩链反应产物体系中滴加所述zncl2溶液,滴加完毕后在40℃条件下搅拌反应5h,得到含锌产物体系;
[0068]
将所述含锌产物体系冷却至室温(25℃),滴加聚醚胺d230(1.15g,5mmol),滴加完毕后在40℃以及n2氛围中,再继续搅拌反应4h;将所得聚氨酯材料倒入聚四氟乙烯平板模具中,在80℃、真空且保持静置条件下干燥48h,得到聚氨酯薄膜(记为spu-2),厚度为0.4mm。
[0069]
实施例1
[0070]
按照对比例1的方法制备聚氨酯薄膜spu-1,将按照对比例2的方法制备得到的聚氨酯材料倒在所述聚氨酯薄膜spu-1上,在80℃、真空且保持静置条件下干燥处理48h,得到双层自修复聚氨酯薄膜(记为spu-3),厚度为0.8mm。
[0071]
对比例3
[0072]
按照对比例1的方法制备聚氨酯薄膜,不同之处仅在于t型扩链剂的用量为3.184g(8mmol),溶解所述t型扩链剂时采用的n,n-二甲基乙酰胺体积为20ml,且聚醚胺d230的用量为0.46g(2mmol),最终所得聚氨酯薄膜记为spu-4,厚度为0.4mm。
[0073]
对比例4
[0074]
按照对比例2的方法制备聚氨酯薄膜,不同之处仅在于zncl2固体的用量为0.34g(2.5mmol),最终所得聚氨酯薄膜记为spu-5,厚度为0.4mm。
[0075]
测试例1
[0076]
为有效评估聚氨酯薄膜的力学性能,将对比例1~4和实施例1制备的spu-1、spu-2、spu-3、spu-4和spu-5进行应力-应变曲线测试(测试标准:gb/t 1040-2006,试验速度:10mm/min,试验环境:25℃),并进行对比,所得结果见图3,具体数据汇总在表1中。
[0077]
此外,还对实施例1制备的spu-3的自修复性能进行了测试(测试标准:gb/t 1040-2006,试验速度:10mm/min,试验环境:25℃),其不同修复时间下的机械性能数据汇总于表2中,spu-3在不同时间下(试验环境:25℃)的自修复效率数据汇总于表3中,所得应力-应变曲线结果见图4。
[0078]
表1 spu-1、spu-2、spu-3、spu-4和spu-5的断裂伸长率、极限抗拉强度和韧性
[0079]
[0080][0081]
表2 spu-3在不同自修复时间下的机械性能
[0082]
自修复时间(h)强度(mpa)断裂伸长率(%)韧性(mj/m3)原始样品2.3163412.270.51.37881.0611.771392.2361.873606.23122.134227.89242.2062411.65
[0083]
综合考虑强度、韧性和断裂伸长率三个因素,根据式i所示公式计算出自修复效率se(%):
[0084]
se(%)=p
修复后
/p
原始
×
100%
ꢀꢀ
式i;
[0085]
所述式i中p可代表强度、断列伸长率或韧性。
[0086]
由图3以及表1可知,spu-1展现出极高的可拉伸性能,其最大抗拉强度为2.64mpa,断裂应变为1091.32%,韧性值为18.96mj/m3。因此,将spu-1作为双层自修复聚氨酯薄膜的内层,可赋予聚氨酯薄膜高机械强度、良好的耐磨性能和抗破坏能力。在此,含有四重氢键的t型扩链剂的含量对聚氨酯薄膜的机械性能有显著影响,由于有效的能量耗散,非共价聚氨酯在外力作用下表现出显著的机械增韧效果和卓越的室温自修复能力。因此,将spu-1作为双层自修复聚氨酯薄膜的内层,可赋予聚氨酯薄膜优异的自修复合能力和高可拉伸性。spu-2具有杰出的机械性能,其最大抗拉强度达14.15mpa,断裂应变为476.93%,韧性值为47.57mj/m3。spu-2不仅存在动态和密集的多重氢键相互作用,还因锌盐的掺入使得体系中形成了锌离子与t型扩链剂间的金属配位键作用。spu-2中所引入的zn
2+
配位键可以限制流动相的迁移性并增强了链段的结晶度与网络密度,可以有效调节聚氨酯的机械强度与自修复合性能。动态和密集的氢键相互作用和金属配位键的协同作用,实现了聚氨酯材料机械性能的增强。因此,将spu-2作为双层自修复聚氨酯薄膜的外层,可赋予聚氨酯薄膜高机械强度、良好的耐磨性和抗破坏能力。在spu-1和spu-2基础上制备得到的spu-3,实现了“内软外硬”的层间分布,具有显著的室温自修复能力以及显著增强的机械性能。
[0087]
此外,比较对比例1制备的spu-1以及对比例3制备的spu-4可知,通过调整t型扩链剂与聚醚胺d230的比例后,聚氨酯薄膜的机械性能有明显改变,spu-4的强度高于spu-1,但其断裂伸长率却有所降低,因而spu-4的自愈合性能会有所下降。比较对比例2制备的spu-2以及对比例4制备的spu-5可知,通过调整金属离子的添加量,聚氨酯薄膜的机械性能也发生了明显的改变,spu-5的断裂伸长率高于spu-2,但其强度却有所降低。
[0088]
由图4以及表2可知,spu-3表现出良好的室温自修复合能力。在室温下,将哑铃型样品从中间剪开,在0.5h后,spu-3的性能得到了一定的恢复,拉伸强度表现出1.37mpa、88%的断裂伸长率和1.06mj/m3的低韧性值。随着修复时间的增加,spu-3的强度、断裂伸长
率也随之增强,这得益于聚合物网络结构中可逆非共价相互作用的存在,可以有效地限制聚合物体系中分子链段的运动,并增强链段的结晶度与网络密度,有效调节聚氨酯材料的机械强度与自修复合性能。在自修复时间达到24h后,spu-3的机械性能基本实现了恢复,其强度、韧性和断裂伸长率的自修复效率分别达到了95.24%、94.95%和98.36%。
[0089]
对比例5
[0090]
参照文献(王建辉,赵悦菊,郑永立,石金彪,滕济林;一种自修复聚氨酯的制备及表征[j],热固性树脂,2021,36(01):23-26)制备聚氨酯材料,具体步骤如下:
[0091]
称取分子量为2000g/mol的聚丙二醇(ppg-2000,6mmol),在110℃真空除水2h,以除去其中的水残留,避免多余水分对实验干扰;称取二苯基甲烷二异氰酸酯(mdi,3mmol)溶解于乙酸乙酯(10g)中,并加入2滴二月桂酸二丁基锡(dbtdl),充分混合后加入ppg-2000中,向所得混合料液中加入甲苯二异氰酸酯(tdi,6mmol),在恒温70℃继续反应1.5h,得到-nco封端的ppg-2000预聚体;
[0092]
将所述-nco封端的ppg-2000预聚体在水浴锅中冷却至室温,加入乙酸乙酯(50g)稀释至质量分数20%,称取异氟尔酮二胺(ipda,3mmol)溶于乙酸乙酯(15g)中,随后将所得ipda溶液滴加至反应体系中,将所得混合料液倒入聚四氟乙烯平板模具中,真空条件下干燥,得到聚氨酯薄膜,厚度为0.4mm。
[0093]
对比例6
[0094]
按照对比例5的方法制备聚氨酯薄膜,不同之处仅在于聚丙二醇的分子量为1000g/mol,最终所得聚氨酯薄膜的厚度为0.4mm。
[0095]
对比例5和对比例6中聚氨酯薄膜的自修复性能测试数据见表3。
[0096]
表3对比例5和对比例6中聚氨酯薄膜的自修复性能测试数据
[0097][0098]
由表3可得出以下结论:
[0099]
(1)对比例5中聚氨酯薄膜的强度明显高于对比例6中聚氨酯薄膜,而其断裂伸长率低于对比例6中聚氨酯薄膜;
[0100]
(2)对比例5中聚氨酯薄膜具有较低的自修复效率,在40℃/3h条件下,自修复效率仅为23%,而在室温/24h条件下,自修复效率也仅为28%。本发明提供的双层自修复聚氨酯薄膜在室温/24h条件下,自修复效率最大可达98%以上,展现出明显的室温自修复优势。此外,对比例5的最大强度为8.90mpa,该值也明显低于本发明的双层自修复聚氨酯薄膜中硬层聚氨酯薄膜的最大强度14.15mpa,因此在机械性能上面,本发明中双层自修复聚氨酯薄膜也凸显出了显著优势。
[0101]
(3)对比例6中聚氨酯薄膜在40℃/3h条件下,自修复效率仅为72%,而在室温/24h条件下,自修复效率较高,达到了97%。但是,对比例6中聚氨酯薄膜的强度较低,其初始最大强度为1.31mpa,修复后最大强度也仅为1.27mpa,较低的机械强度难以满足保护涂层、电子皮肤等领域的实际应用需要。本发明的双层自修复聚氨酯薄膜中软层聚氨酯薄膜的最大抗拉强度为2.64mpa,机械性能较好,同时本发明中双层自修复聚氨酯薄膜也具备极高的室温自修复效率。
[0102]
测试例2
[0103]
将实施例1制备的spu-3剪开为两段,再将剪开的两段拼接在一起,得到带有裂纹的spu-3,然后在80℃条件下进行自修复,采用光学显微镜观察不同时间下spu-3的修复过程,结果如图5所示。由图5可知,在80℃条件下,spu-3自修复5min后,裂纹痕迹明显减弱;自修复30min后,光学显微镜下观察可知裂纹几乎完全消失,这充分证明spu-3具有快速自我修复功能。
[0104]
由以上实施例以及对比例可知,本发明采用t型扩链剂,经扩链反应可以形成超分子聚氨酯以及聚合物网络中主链和侧链氢键的配位,从而实现聚合物的自修复性能。本发明通过“软硬复合”的制备工艺得到“内软外硬”的双层自修复聚氨酯薄膜,在常温下可以快速修复双层自修复聚氨酯薄膜表面的划痕。对于硬层聚氨酯薄膜而言,zncl2的加入,促使其在硬层聚氨酯薄膜表面形成了致密的金属配位键,这大大提高了表面硬度、耐刮擦性以及耐破坏能力。对于软层聚氨酯薄膜而言,其具有良好的粘结强度,能够与基材保持良好的附着力,多重氢键的存在赋予了材料卓越的室温自修复能力,这为聚氨酯材料的快速自修复提供了重要的保证。此外,通过对该双层自修复聚氨酯薄膜的自修复能力进行测试,结果表明在室温下自修复24h后,完全消除了双层自修复聚氨酯薄膜表面的划痕,且其力学性能得到了95%以上的恢复。
[0105]
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1