烧结的片晶状随机形状磨料颗粒及其制造方法与流程

文档序号:13078645阅读:343来源:国知局
烧结的片晶状随机形状磨料颗粒及其制造方法与流程

本发明涉及烧结的片晶状随机形状磨料颗粒、其制造方法及其用途。

约30年前,一种新型的且大幅改进的基于α-氧化铝的磨料颗粒(通常称为源自溶胶凝胶的磨料颗粒)被开发出来并商业化。这种新型的α-氧化铝磨料颗粒对金属的研磨性能(例如通过切削率或者g比(切削量和磨料损耗之商)测量)显著高于使用传统熔融氧化铝磨料颗粒所获得的。

最初,溶胶凝胶磨料颗粒被开发为熔融微晶氧化铝氧化锆磨料颗粒的替代品。因此,ep0024099b1(其追溯到1979)要求保护基于α-氧化铝的粒状磨料矿物,其包含至少10%的氧化锆和/或氧化铪作为改性成分。在后来数年中,公布了多个溶胶凝胶磨料颗粒专利和专利申请,由此丢弃了氧化铝-氧化锆复合材料的最初构思,貌似是因为通常发现包含少量氧化锆以外的改性剂的纯氧化铝类产品或者源自溶胶凝胶的α-氧化铝类磨料颗粒表现得优于氧化铝氧化锆溶胶凝胶磨料颗粒。

溶胶凝胶磨料颗粒通常通过以下方式制备:将氧化铝一水合物分散在酸化水中,使分散液胶凝,干燥所得凝胶,将干燥的凝胶粉碎成颗粒,煅烧干燥的颗粒以除去水和其他挥发物并且在远低于氧化铝熔点的温度烧结经煅烧的颗粒。常常,还使用一种以上氧化物改性剂、成核剂、颗粒生长抑制剂或者其他添加剂,以进一步改善氧化铝磨料颗粒的性质和研磨性能。

通过溶胶凝胶工艺来制备致密的氧化铝类磨料颗粒记载于例如美国专利4,314,827号、4,881,951号和5,227,104号。

而且,在过去十五年中,已公布了记载源自溶胶凝胶的具有特定形状的基于α-氧化铝的磨料颗粒的多个专利和专利申请。

美国专利5,201,916号记载了形状特征可以为具有三角、矩形或者其他几何形状的薄本体的磨料颗粒。这样的磨料颗粒通过提供包含可以转化为α-氧化铝的颗粒的分散液和将所述分散液导入具有特定形状的模具室来制备。在胶凝和干燥后,形成具有预定尺寸的磨料颗粒前体颗粒,将该颗粒从模具室取出,然后煅烧并烧结。

类似成形的产品和方法记载于例如美国专利7,384,437号、8,123,828号、8,764,865号、8,142,531号、8,142,891号和8,142,532号。

上述参考文献中记载的方法和产品的缺点在于,为了获得特定形状,使用了具有按照所希望的磨料颗粒的尺寸和形状的模具室。不过,所希望的颗粒的平均粒径为1mm以下,因此,上述成型技术在大多数情况下很复杂,特别是并非非常有生产效率。

ep0318168b1记载了片晶形状的磨料颗粒。片晶的制备通过溶胶凝胶工艺进行,其中,例如,通过挤出将凝胶成形为具有预定厚度的膜,然后干燥和粉碎形成颗粒。煅烧并烧结经粉碎的颗粒。对于得到的片晶状磨料颗粒,没有提到具体晶体结构或者具体化学组成。至今,尽管专利可追溯至1987年,但在磨料市场上仍未见到这样的磨料颗粒。

具有低圆度系数的三角形状磨料颗粒公开于美国专利申请2010/0319269a1。其指出,通过使成形的磨料颗粒的形状特别准确,产生了改善的研磨性能。

尽管过去15年中公开了多种不同形状的磨料颗粒,但至今只有一种源自溶胶凝胶的成形磨料颗粒产品被成功地商业化,其以商品名“cubitronii”销售,具有三角形状。不过,技术人员一般将高性能潜力归结于成形的磨料颗粒,因此,对于替代的高性能成形磨料颗粒仍有高需求。

因此,本申请的一个目的是提供超值且表现良好的烧结的成形磨料颗粒。另一目的是提供制造这种基于α-氧化铝的烧结的成形磨料颗粒的方法。

令人惊讶的是,根据本发明,发现基于α-氧化铝的片晶状随机形状烧结的磨料颗粒对于特殊研磨操作具有优良的性质,前提是所述颗粒具有非常细的平均晶粒尺寸为100nm~300nm的晶体结构和大于20gpa的高硬度hv。

在优选实施方式中,本发明的烧结的片晶状随机形状磨料颗粒具有包含1重量%~20重量%氧化锆的化学组成。在这种情况下,晶体结构包含α-氧化铝晶体的主要连续相和基本上晶间取向的氧化锆晶体的次要相,其中,氧化铝和氧化锆晶体的平均晶粒尺寸为100nm~300nm,其中,氧化锆晶体的晶粒尺寸小于100nm。

烧结的片晶状随机形状磨料颗粒通常包含具有第一表面和与第一表面相反的第二表面的本体,由此两个表面由厚度(t)为20μm~500μm的随机形状侧壁隔开。

烧结的片晶状随机形状磨料颗粒可以由基于图像分析的各种颗粒形状系数有效地表征。

圆当量直径(x)定义为具有与颗粒相同的表面积的圆的直径。圆当量直径(x)可以按式(1)基于颗粒的测量面积(a)计算:

(1)

圆形度(c)定义为颗粒与圆相似的程度。颗粒变得越偏离完美的圆,圆形度值越低。圆形度可以基于测量面积(a)和周长(p)计算。iso9276-6(2006)定义了按照式(2)的圆形度:

(2)

根据大多数较老的文献,长宽比(ar)计算为长度除以宽度。长度是平行于主轴的圆的周长上任何两点间的最大距离。宽度是平行于短轴的圆的周长上两点之间的最大距离,其中,主轴穿过对应于该形状的最小转动能的颗粒的质心。短轴穿过颗粒的质心,总是垂直于主轴。

不均匀系数按式(3)基于颗粒的测量面积(a)和周长(p)计算:

(3)

各种几何形状(即,圆形,矩形,正方形和等边三角形)的一些示例性ue值汇总在下表1中。

表1

表征烧结的片晶状随机形状磨料颗粒的另一种可能性是使用周长随机性系数(prf),其通过沿片晶状随机形状磨料颗粒的周长的侧壁绘制等边三角形、矩形或者圆形的切线确定。prf(%)通过将完成矩形几何形状的缺失面积(m)除以烧结的片晶状随机形状磨料颗粒的实际面积(a)并乘以100来计算。对于该计算必须使用具有最小缺失面积(m)的最接近矩形的几何形状。测量通过使用图像分析软件或者类似的适当测量技术进行。重复测量以测量至少50个单独的片晶状随机形状磨料颗粒的周长,从而通过将所述至少50个单独的结果取平均值而确定平均周长随机性系数(aprf)。100%的平均周长随机性系数将表示缺失面积与测量的磨料颗粒的实际面积一样大。

发现当平均周长随机性系数大于15%、优选大于20%、更优选为30%~100%时,借助片晶状磨料颗粒可以获得特别高性能的研磨结果。对此的可能解释可以是多个片晶的随机取向的粗糙边缘将导致磨料颗粒具有相当均匀的研磨表面与特别多锋利边缘,如此产生高切削率。此解释基本上基于对磨料颗粒的光学研究。

另一种描述片晶的“随机性特征”的方式可以通过研究各个片晶状颗粒的面积或者长宽比相比于特定“模具制造的”磨料颗粒(如cubitronii这样的等边三角形)的差异来进行。片晶间的面积的差异在下表2中与某些选择的磨料颗粒的某些重要颗粒形状系数一起呈现。为了描述面积的差异,使用了anova程序(excel软件)。

表2

汇总在表2中的选择的磨料颗粒为下述实施例7、8和9的片晶状随机形状磨料颗粒,其分别包含2.5重量%(zta2.5)、5重量%(zta5)或者10重量%(zta10)的氧化锆。市售的未成形磨料颗粒(cub.321)和等边三角形形式的成形磨料颗粒(cub.ii)用于对比。后两种磨料颗粒颗粒的化学组成对应于比较例1。随机形状磨料颗粒的aprf系数大多使用矩形作为最接近几何形状进行计算,而在cub.ii的情况下则使用等边三角形。

发现使用显示出一定程度的圆形度和长度与宽度的小差异的本发明的片晶状随机形状磨料颗粒可以获得特别好的结果。有利的是,通常的长宽比为1.20~1.90,优选1.40~1.70,更优选低于1.60。后一类型的片晶状磨料颗粒的实例为zta5cc,其按照实施例8制造,但在烧结后还粉碎并筛选。可能的解释为,在静电涂布后,形成特别均匀的研磨表面,由此片晶状磨料颗粒基本上处于其侧壁上的磨料颗粒的衬垫上的直立位置。

当圆形度(c)为0.6~0.7时,获得了特别好的研磨性能。而且发现,如果颗粒的不均匀系数(ue)为10~17,则这是有利的。

表征烧结的片晶状随机形状磨料颗粒的另一个合适的特征为长厚比,其通常为2~10,优选4~8。而且在这种情况下发现,为了成功地应用于磨料颗粒,烧结的片晶状随机形状磨料颗粒应具有一定程度的具有相应的长厚比的密实性。

在本发明的优选实施方式中,随机形状侧壁的厚度(t)为150μm~450μm。氧化铝和氧化锆晶体的平均晶粒尺寸有利地低于250nm。

只要通过预定凝胶层的厚度和随后的粉碎没有自动获得相应的颗粒形状系数,则可通过另外的分级(例如筛选)、粉碎或者借助于例如振动台的颗粒形状定级来调节所需的比例。

粒径和形状通过光学显微镜stemisv6(carlzeissgmbh)测量。粒径和形状通过imagej软件进行分析以计算在拍摄照片时随意沉积和分离的各单片晶的相应的面积和周长。该方法是可靠的,并提供可重现的值。

优选的是,由于通常添加硝酸镁溶液作为溶胶凝胶工艺过程中的晶体生长抑制剂和解胶剂的事实,源自溶胶凝胶的片晶状随机形状磨料颗粒的化学组成还包含0.5重量%~5重量%的mgo。

而且,发现1重量%~10重量%的氧化锆已足以获得用于特殊研磨操作的高性能磨料颗粒。因此,在本发明的优选实施方式中,片晶状随机形状磨料颗粒包含1重量%~10重量%的氧化锆。

至少50重量%的氧化锆、优选75重量%的氧化锆以四方变型存在。

在本发明的另一个优选实施方式中,至少一个表面被均匀地结构化,包含结构要素,如结节、波浪、缺口、牙状物、锯齿、角锥、圆锥和/或其他凹陷或突起。如此,片晶状磨料颗粒在磨料制品(如砂轮、涂布磨料和钢纸砂盘)中的结合得到改善,还可以减少其磨损。不证自明的是,如果两个表面都均匀地构造为包含上述结构要素,则得到进一步改善。结构要素可以通过在干燥前将凝胶铺展到具有反转结构的载体板上而赋予到片晶状随机形状颗粒的表面。可以通过用也表现出反转结构的织构化剂处理铺展的凝胶膜的表面而赋予第二均匀构造的表面。在那种情况下,显然前提是凝胶的稠度足够刚性以在干燥过程中保持赋予的结构。

制造片晶状随机形状磨料颗粒的方法包括以下步骤:

-制备包含粒径小于300nm的α-氧化铝晶种的α-氧化铝水合物在酸化水中的分散液;

-通过添加锆盐和镁盐(如乙酸锆和硝酸镁)的水溶液使分散液胶凝;

-通过任何常规方法(如挤出、成型、压制、铺展或者涂布)使凝胶形成为均匀厚度的层;

-干燥成形的凝胶,得到片晶状磨料颗粒前体材料;

-粉碎和筛选片晶状磨料颗粒前体材料,得到片晶状随机形状磨料前体颗粒;

-可选地煅烧磨料颗粒前体颗粒;

-在低于1450℃的温度烧结磨料颗粒前体颗粒,得到片晶状随机形状磨料颗粒;和

-可选地还粉碎、筛选和分级烧结的片晶状随机形状磨料颗粒,得到平均长宽比(ar)小于1.70、优选小于1.60的片晶状随机形状磨料颗粒。

α-氧化铝晶种的制备是一个特别重要的主要工艺步骤,其例如通过湿式球磨进行,以平均粒径小于3μm的微粒α-氧化铝粉末开始,然后将球磨后的分散液离心,得到粒径小于100nm的α-氧化铝晶种。基于磨料颗粒产品的重量,用于制造片晶状随机形状磨料颗粒的晶种的量通常为1重量%~5重量%,有利地为约2重量%。为了制备α-氧化铝水合物在酸化水中的晶种分散液,将离心后的晶种分散液添加到α-氧化铝一水合物的20重量%~30重量%水溶液,从而通过添加足量的硝酸将溶液的ph调节至约2.5。使用高剪切均化器将得到的溶液均化,然后通过添加包含足量锆盐和镁盐的溶液在室温胶凝,得到具有包含1重量%~20重量%的氧化锆和1重量%~5重量%的氧化镁的化学组成的磨料颗粒。例如通过将凝胶挤出通过具有相应的开槽喷嘴的模具,而将凝胶形成为厚度为约800μm~1600μm的扁平膜。将扁平膜在约100℃的温度干燥,由此凝胶膜的厚度强烈收缩,并形成裂纹。将干燥的材料粉碎并筛选,得到片晶状随机形状磨料前体颗粒。所述前体颗粒可选地在600℃~700℃的温度煅烧,然后在旋转窑中于约1360℃烧结20分钟。烧结后,优选将烧结的磨料颗粒再一次粉碎、筛选和/或使用例如振动台分级,以获得平均长宽比(ar)小于1.70、优选小于1.60的片晶状随机形状磨料颗粒。

挤出以外的任何合适的方法,如压制、成型、铺展和涂布,也可以用于使凝胶成形。

通常,所得片晶状磨料颗粒的硬度hv大于20gpa,优选大于22gpa,并且密度大于理论密度的97%。

还通过作为图1~4附加到说明书的附图来说明本发明的特征。

图1显示了片晶状随机形状磨料颗粒的蚀刻抛光部分的扫描电子显微照片。

图2a借助于等边三角形描绘了片晶状随机形状磨料颗粒的测量面积。

图2b借助于矩形描绘了片晶状随机形状磨料颗粒的测量面积。

图2c借助于圆形描绘了片晶状随机形状磨料颗粒的测量面积。

图3a显示了图2a~2c的片晶状随机形状磨料颗粒的平面图。

图3b显示了图2a~2c的片晶状随机形状磨料颗粒的透视图。

图4描绘了比较片晶状随机形状磨料颗粒与现有技术磨料颗粒的研磨性能的图表。

图1显示了片晶状随机形状磨料颗粒的微晶晶体结构,其包含α-氧化铝晶体的主要连续相和基本上晶间取向的氧化锆晶体的次要相。分析的实例的化学组成包含2.5重量%的氧化锆和1重量%的mgo。使用粒径低于100nm的2重量%α-氧化铝晶种来制造样品。上述片晶状磨料颗粒的硬度hv为23.6gpa,密度为理论密度的98.6%。平均晶粒尺寸为100nm~300nm,氧化锆晶体1的晶粒尺寸低于100nm。

图2a~2c描绘了测量平均周长随机性系数(aprf)的方法。周长随机性系数(prf)通过沿片晶状随机形状磨料颗粒的周长的侧壁绘制等边三角形(参见图2a)、矩形(参见图2b)或者圆形(参见图2c)的切线来确定。prf(%)通过将缺失面积(m)(用于完成选定的规则几何形状)除以实际面积(a)然后乘以100来计算。重复测量,以测量50个单独的片晶状随机形状磨料颗粒的周长,从而通过将50个个体结果平均而测定平均周长随机性系数(aprf)。对于该计算应使用最接近规则的几何形状。因此,对于具有图2a~2c的周长的片晶状随机形状磨料颗粒,应使用圆形或者矩形。

图3a显示了图2a~2c的片晶状随机形状磨料颗粒的平面图。长度(l)是平行于主轴的颗粒的周长上的任意两点之间的最大距离。宽度(w)是平行于短轴的颗粒的周长上的两点之间的最大距离,其中主轴穿过对应于该形状的最小转动能的颗粒的质心。短轴穿过颗粒的质心,并且总是垂直于主轴。

图3b显示了图2a~2c的片晶状随机形状磨料颗粒的透视图。片晶状随机形状磨料颗粒包含具有第一表面2和与第一表面2相反的第二表面的本体,两个表面由厚度(t)为20μm~500μm的随机形状侧壁3隔开。

图4是片晶状随机形状磨料颗粒与未成形磨料颗粒相比的一些选择的研磨测试的图示说明。图4在以下研磨测试的说明书中更详细说明。

还通过以下实施例来进一步阐述本发明,但实施例中所述的具体材料及其用量以及其他条件和细节不应解释为过度地限制本发明。

实施例1(比较例)

比较例1按照美国专利4,881,951号的教导通过浸渍法使用约2重量%的la2o3、1重量%的y2o3和1重量%的mgo作为改性剂制造。所得磨料颗粒对应于市售的商品名为“cubitron321”的源自溶胶凝胶的磨料颗粒。

实施例2(比较例)

通过将α-氧化铝一水合物粉末与2重量%的α-氧化铝晶种(基于希望的产品的总重量)一起混合在含有水和浓硝酸(70%)的溶液中,由此将ph调节至2.5,从而制得具有约30重量%固形物的分散液。所得溶胶与作为改性成分的1重量%的硝酸镁的等效氧化物和2.5重量%的乙酸锆的等效氧化物(各自基于希望的产品的重量)混合。在添加乙酸锆和硝酸镁之后在室温发生胶凝。将凝胶在约100℃干燥得到磨料颗粒前体材料,将其粉碎以将粒径降低至略大于磨料颗粒所希望的粒径,然后筛选。将筛选过的磨料颗粒前体在旋转窑中于约1360℃烧结20分钟以得到磨料颗粒。在烧结后,将磨料颗粒最终筛选得到按照fepa的砂p36。

实施例3~6(比较例)

除了使用5重量%(实施例3)、10重量%(实施例4)、15重量%(实施例5)或者20重量%(实施例6)的乙酸锆的等效氧化物作为改性成分以外,按照比较例2制造实施例3~6。

实施例7(发明)

通过将α-氧化铝一水合物粉末与2重量%的α-氧化铝晶种(基于希望的产品的总重量)一起混合在含有水和浓硝酸(70%)的溶液中,由此将ph调节至2.5,从而制得具有约30重量%固形物的分散液。所得溶胶与1重量%的硝酸镁的等效氧化物和2.5重量%的乙酸锆的等效氧化物(各自基于希望的产品的重量)混合。在添加乙酸锆和硝酸镁之后在室温发生胶凝。通过具有约1.5mm厚度和3cm长度的矩形喷嘴的模具将凝胶挤出到载体板上而得到膜。将成形的凝胶在约100℃干燥得到片晶状磨料颗粒前体材料,将其粉碎以将粒径降低至略大于磨料颗粒所希望的粒径,然后筛选。将筛选过的磨料颗粒前体在旋转窑中于约1360℃烧结20分钟以得到片晶状随机形状磨料颗粒。在烧结后,将成形的磨料颗粒最终筛选得到按照fepa的砂p36。

烧结的片晶状随机形状磨料颗粒的维氏硬度hv为23.6gpa,密度为理论密度的98.6%,并具有平均晶粒尺寸为170nm的晶体结构。颗粒的平均长度为约1080μm,平均宽度为620μm,平均厚度为约180μm。

实施例8和9(发明)

除了使用5重量%(实施例8)和10重量%(实施例9)的乙酸锆的等效氧化物作为改性成分以外,按照实施例7制造实施例8和9。

实施例10(研磨测试/250mm钢纸砂盘)

通过利用静电颗粒涂布机(peterschwabegmbh)(其施加22kv~35kv的静电场6~10秒)将约40g磨料颗粒静电涂布到涂布有约5g的树脂类砂带涂层的钢纸上,制造钢纸砂盘。将涂布过的磨料钢纸砂盘在100℃固化6小时,然后涂布上约35g底漆,最后在140℃固化12小时。

按照以下筛选分析使用砂p36进行测试:

表3

将工件、即直径为20mm的cr-ni不锈钢条(1.4571)分别以40n、60n的压力施加至以2000rpm运行的钢纸砂盘。该测试测量各2分钟循环后工件的重量损失。各测试运行包括各自以2分钟冷却时间隔开的总计8个研磨循环。在测试运行后,还测量了钢纸砂盘的重量损失。

表4

一些选择的实施例(1、2、7和8)的研磨测试的图示重现在图4中。比较例1称为cubitron321。比较例2是掺杂有2.5重量%氧化锆的溶胶凝胶磨料颗粒,指定为zta-sg2.5。实施例7,即具有与实施例2相同的化学组成的本发明的片晶状磨料颗粒,称为zta-sg2.5(板)。实施例8,即掺杂有5重量%氧化锆的本发明的磨料颗粒,称为zta-sg5(板)。

g比按照式(4)计算,其中直接参照比较例1进行:

(4)

图示清楚地表明,特别是在第一个研磨循环中,片晶状随机形状实施例7和8显示出比未成形颗粒显著更高的切削率,从而掺杂有5重量%氧化锆的实施例8在整个测试运行中保持高水平。另一个优点在于,对于所有氧化锆掺杂的颗粒,测量的磨料损耗小于比较例1,特别是在高压力条件下,因此,实施例8显示了142%的g比,使得研磨性能提高42%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1