本公开主要涉及在用钻井液钻探期间控制井眼中的井漏。更具体而言,本公开的实施方案涉及一种堵漏材料(lcm)。
背景技术:
井漏是钻井作业期间遇到的常见挑战之一。井漏可能在作业的任何阶段期间遇到,并且当泵入井中的钻井液(其可包括钻井泥浆)部分返回或不返回到地面时发生。虽然预期会有一些流体漏失,但是从安全、经济或环境的角度来看,不希望有过多的流体漏失。井漏与井控制、井眼不稳定、管道粘连、不成功的生产试验、完井后差的烃产量以及由泥浆颗粒堵塞孔隙和孔喉造成的地层损害的问题有关。在极端情况下,井漏问题可能会迫使放弃井。井漏可以发生在诸如天然裂隙性地层、溶洞性地层和高渗透性地层之类的各种地层中。薄弱地层中的次生裂缝也可能会引发井漏。当井控和维持井眼稳定性所需的泥浆比重超过地层的压裂梯度时,次生裂缝可能会引发井漏。具有低压裂梯度的枯竭储层地层可能易受次生井漏的影响。由于在这种地层中使用的泥浆的泥浆比重窗口较窄,因此因为用于支撑地层的泥浆比重可容易地超过地层的抗裂性,所以在不发生诱发性井漏的情况下钻探一些枯竭区域可能是困难的。由于钻井泥浆不能从井眼中移除低重力固体和高重力固体,因此,也可能发生诱发性井漏。泥浆中固体的积累可能使流体密度增加超过泥浆比重窗口的上限并在地层中产生次生裂缝,从而导致井漏问题。技术实现要素:不同类型的传统和特别设计的漏失控制材料、浆液和段塞被用于控制井漏。漏失控制材料通常可以分为几类,其可以包括表面抹灰和浅堵塞材料、裂缝密封和较深的堵塞材料或漏失控制浆料、间隙桥接和孔堵塞材料。这些堵漏材料(lcm)被用于通过阻塞钻井泥浆进入地层的路径来减轻井漏。在井漏情况下使用的lcm的类型取决于井漏的程度和地层的类型。然而,当在中度至重度的漏失情况下使用常规的lcm和井漏段塞时,它们通常会失效。此外,常规的漏失控制段塞和含有较新的lcm的浆料也缺乏对中度至重度漏失区域进行密封和阻塞的能力。另外,如果钻井液或lcm与储层周围的环境相互作用,则井漏可能导致环境问题。此外,购买和输入lcm到钻井位置可能是昂贵且耗时的。因此,需要堵漏材料以克服与井漏相关的钻探挑战,特别是在中度至重度漏失区域。本公开的实施方案大体涉及快速脱水的lcm组合物(也称为快速脱水的漏失控制浆料(rdlcs)),以控制井眼中的井漏区域中的井漏。更具体地,本公开的实施方案涉及快速脱水的lcm组合物,其包含携带液、颗粒材料(例如,火山灰)、粘性材料(也称为“增粘剂”)和有机纤维材料(例如,来自枣树的轴纤维(rachisfiber))。在一些实施方案中,提供了一种堵漏材料(lcm)组合物。该lcm组合物包含:携带液;包含火山灰的颗粒材料;增粘剂;和包含枣树轴纤维的纤维材料。在一些实施方案中,所述携带液、所述颗粒材料、所述增粘剂和所述纤维材料形成均质混合物。在一些实施方案中,所述携带液包括水。在一些实施方案中,所述增粘剂包括纤维素微纤维。在一些实施方案中,所述颗粒材料由火山灰组成。在一些实施方案中,所述纤维材料由枣树轴纤维组成。在一些实施方案中,所述lcm组合物在100磅/平方英寸的压差(psid)下的脱水时间小于3分钟。在一些实施方案中,所述火山灰占所述lcm组合物的至少6重量%。在一些实施方案中,所述枣树轴纤维占所述lcm组合物的至少6重量%。另外,在一些实施方案中,提供了一种控制井眼中井漏区域的井漏的方法。该方法包括将改良的钻井液引入井眼中,使得所述改良的钻井液接触所述井漏区域并降低所述井漏区域中的井漏率。所述改良的钻井液包含钻井液和堵漏材料(lcm)组合物。该lcm组合物包含:携带液;包含火山灰的颗粒材料;增粘剂;和包含枣树轴纤维的纤维材料。在一些实施方案中,该方法包括将所述堵漏材料添加到所述钻井液中以产生所述改良的钻井液。在一些实施方案中,所述携带液包括水。在一些实施方案中,所述增粘剂包括纤维素微纤维。在一些实施方案中,所述改良的钻井液由所述钻井液和所述lcm组合物组成。在一些实施方案中,所述颗粒材料由火山灰组成。在一些实施方案中,所述纤维材料由枣树轴纤维组成。在一些实施方案中,所述lcm组合物在100磅/平方英寸的压差(psid)下的脱水时间小于3分钟。在一些实施方案中,所述火山灰占所述lcm组合物的至少6重量%。在一些实施方案中,所述枣树轴纤维占所述lcm组合物的至少6重量%。此外,在一些实施方案中,提供了一种改良的钻井液。该改良的钻井液包含:钻井液和堵漏材料(lcm)组合物。该lcm组合物包含:携带液;包含火山灰的颗粒材料;增粘剂;和包含枣树轴纤维的纤维材料。在一些实施方案中,所述携带液、所述颗粒材料、所述增粘剂和所述纤维材料形成均质混合物。在一些实施方案中,所述携带液包括水。在一些实施方案中,所述增粘剂包括纤维素微纤维。在一些实施方案中,所述颗粒材料由火山灰组成。在一些实施方案中,所述纤维材料由枣树轴纤维组成。在一些实施方案中,所述火山灰占所述lcm组合物的至少6重量%。在一些实施方案中,所述枣树轴纤维占所述lcm组合物的至少6重量%。此外,在一些实施方案中,提供了一种形成堵漏材料的方法。该方法包括添加携带液以形成混合物;向所述混合物中添加颗粒材料,所述颗粒材料包含火山灰;向所述混合物中添加增粘剂;和向所述混合物中添加纤维材料,所述纤维材料包含枣树轴纤维。在一些实施方案中,所述携带液包括水。在一些实施方案中,所述增粘剂包括纤维素微纤维。在一些实施方案中,所述颗粒材料由火山灰组成。在一些实施方案中,所述纤维材料由枣树轴纤维组成。在一些实施方案中,所述纤维材料由枣树轴纤维组成。在一些实施方案中,所述火山灰占所述lcm组合物的至少6重量%。在一些实施方案中,所述枣树轴纤维占所述lcm组合物的至少6重量%。附图说明图1描绘了在根据本公开的实施方案的脱水试验法中形成的三个实施例lcm组合物的三个堵头的图片。具体实施方式现在将参考本公开的所述实施方案对本公开进行更全面地描述。然而,本公开可以以许多不同的形式体现并且不应该被解释为限于本公开中阐述的所述实施方案。相反,提供这些实施方案是为了使本公开彻底和完整,并且这些实施方案将本公开的范围完全传达给本领域技术人员。在钻井眼时,将钻井液连续地泵入井眼中以清理和清洁井眼和锉屑。钻井液从泥浆坑泵入井眼并再次返回至地面。当返回到地面的钻井液的流速小于泵入井眼的钻井液的流速,产生井漏区域,并且这种返回的钻井液的减少或缺失被称为井漏。本公开包含用作堵漏材料(lcm)的组合物,以在钻井时减轻或防止井中的这种井漏并防止或减少钻井泥浆的漏失。本公开中描述的组合物可以在地层的裂缝中产生实心堵头,以减少或防止钻井泥浆漏失到周围地层中。本公开中描述的组合物可以在约100psid(磅/平方英寸的压差)以上的超平衡压力下在2至3分钟内挤出所有流体相。此外,本公开中描述的组合物是环境友好的、无毒的和环境安全的,使得使用这种组合物进行井漏控制对地下环境和周围含水层几乎没有或没有有害影响。另外,本公开中描述的组合物使用可在当地获得的原材料并且可以促进当地工业(例如枣农业)的经济和就业增长。本公开中描述的组合物还为枣农场废物提供了可行的回收途径(即,在生产枣之后丢弃的部分枣树)。此外,由当地可得的原材料生产组合物可以降低或消除与输入其他lcm相关的成本。本公开包括快速脱水的lcm组合物以控制井眼中的井漏区域的井漏。在一些实施方案中,快速脱水的lcm组合物包含携带液、颗粒材料、粘性材料(也称为“增粘剂”)和有机纤维材料。在一些实施方案中,快速脱水的lcm组合物包含水、火山灰、纤维素微纤维增粘剂和来自枣树(也称为“枣椰树”)的轴纤维。在一些实施方案中,lcm组合物可以形成快速脱水的漏失控制浆料(rdlcs)。实施例本公开包括以下实施例以说明本公开的实施方案。本领域技术人员应理解,以下实施例中公开的技术和组合物表示那些发现在本公开的实践中能够很好地起作用的技术和组合物,因此可以被认为是用于本公开实践的构成模式。然而,本领域技术人员应当理解,鉴于本公开内容,在不脱离本公开的精神和范围的情况下,可以对所公开的具体实施方案进行许多改变并且仍然获得相同或相似的结果。将以下非限制性实施例的lcm组合物制备为lcm段塞并评价该lcm组合物以确定脱水的快速性。表1示出了在脱水试验中使用的快速脱水的漏失控制浆料的lcm组合物的配方,其中以毫升(ml)或克(g)和重量(wt)%示出各组分的组成:表1:脱水试验用lcm配方如上所示,每种配方包含不同量的携带液、火山灰、增粘剂和来自枣树的轴纤维。如在本公开中使用的,术语“火山灰”是指在火山爆发期间产生的且直径小于约2毫米(mm)的颗粒。这种颗粒可包括粉碎的岩石、矿物和火山玻璃。如上所示,试验的配方包括由荷兰roosendaal的cosunbiobasedproducts制造的纤维素微纤维增粘剂在一些实施方案中,纤维材料可以是从枣树(phoenixdactylifera)获得的轴纤维。使用具有过滤单元的美国石油协会(api)压滤机,通过使用以下脱水试验法测试配方1、2和3,所述配方包含进行测试的lcm组合物:1、通过以下列顺序在高速混合器中混合各组分来制备配方:携带液、颗粒材料、增粘剂和纤维材料;2、用配方的350立方厘米(cc)段塞填充api压滤机的过滤单元;3、将过滤单元安装到api压滤机上,固定上盖,并在约100psi压力下连接空气压力管线;和4、测量段塞的脱水时间(即,流体(约350cc)被去除的时间)。表2中示出了配方1、配方2和配方3的测试用lcm组合物的脱水试验法的结果,其中测量的脱水时间以分钟(分钟)计,并且测量的由脱水的段塞形成的堵头的厚度以mm计:表2:脱水试验结果配方1配方2配方3脱水时间(min)21.51堵头厚度(mm)29.7644.4547.27如表2所示,对于在100psi压力下的api单元中的350cc段塞,各个配方表现出小于3分钟的脱水时间(即,在100psid超平衡下,在小于3分钟的脱水时间内形成实心堵头)。各配方之间的脱水时间的变化可能取决于段塞中的颗粒材料(例如,火山灰)的浓度。因此,各种试验用配方可适合作为快速脱水的lcm组合物,以阻塞不同尺寸的裂缝并减少或防止钻井泥浆的漏失。图1描绘了由上述实验得到的三个堵头的图片。通过配方1的脱水试验法形成第一堵头100。通过配方2的脱水试验法形成图1所示的第二堵头102,以及通过配方3的脱水试验法形成图1所示的第三堵头104。图1所示的堵头显示出从配方1到配方3的厚度增加。例如,堵头104的厚度大于堵头102的厚度,并且堵头102的厚度大于堵头100的厚度。因此,如表2和图1中所示,通过脱水沉积的堵头的厚度可随着颗粒材料(例如,火山灰)浓度的增加而增厚。沉积的堵头的稳定性可取决于裂缝的尺寸、堵头刚度、挤出阻力、界面摩擦阻力、堵头厚度和其他因素。因此,由于堵头厚度是堵头的稳定性的一个因素,所以相对于其他类似的快速脱水的lcm组合物,用于较大裂缝的快速脱水的lcm组合物可包含更高浓度的颗粒材料(例如,火山灰)。快速脱水的lcm组合物在一些实施方案中,快速脱水的lcm(也称为漏失控制浆料)可以由携带液、纤维材料、颗粒材料和增粘剂组成。携带液可包括淡水、海水、盐水或地层流体。纤维材料可包括源自枣树废料的纤维材料。颗粒材料可包括火山灰。增粘剂可包括合适的商购增粘剂,其可以在100psi至500psi的超平衡压力下使浆料快速脱水。上表1示出了实施例组合物。在一些实施方案中,快速脱水的lcm组合物可包含携带液、颗粒材料、增粘剂和纤维材料。在一些实施方案中,携带液可包括水。例如,携带液可包括淡水(具有相对低(即,小于5000ppm)浓度的总溶解固体的水)、海水(例如,盐度在约33,000份每百万(ppm)至约37,000份每百万(ppm)范围内的水)、人造盐水、天然盐水、微咸水或地层水。在一些实施方案中,颗粒材料可包括火山灰。在一些实施方案中,火山灰可以从当地来源获得,以降低进口lcm产品、组分或这两者的成本。在一些实施方案中,增粘剂可包括衍生自原始植物材料的纤维素微纤维。在一些实施方案中,增粘剂可以是无毒增粘剂,其具有在约5重量%至约25重量%范围内的纤维素和水并且ph在约3至约6的范围内。在一些实施方案中,增粘剂可包括由荷兰roosendaal的cosunbiobasedproducts制造的在一些实施方案中,纤维材料可包括枣树的轴纤维。在一些实施方案中,快速脱水的lcm组合物可包含作为携带液的水、作为颗粒材料的火山灰、作为增粘剂的纤维素微纤维和作为纤维材料的枣树轴纤维。在一些实施方案中,火山灰可以占快速脱水的lcm组合物段塞的6重量%,并且枣树轴纤维可以占快速脱水的lcm组合物段塞的6重量%。在一些实施方案中,当快速脱水的lcm组合物经受挤压或超平衡压力时,其可在100psid超平衡下在小于约3分钟内消除所有流体相,在100psid超平衡下在小于约2分钟内消除所有流体相,或在100psid超平衡下在小于约1分30秒内消除所有流体相。在一些实施方案中,当快速脱水的lcm组合物经受挤压或超平衡压力时,其可在裂缝中形成实心堵头,以防止或减少钻井泥浆进入周围地层的漏失。在一些实施方案中,与具有较低浓度的颗粒材料的快速脱水的lcm组合物相比,具有相对较高浓度的颗粒材料(例如,火山灰)的快速脱水的lcm组合物可以形成具有相对较大厚度的堵头。在具有枣树轴纤维作为纤维材料(即,由纤维组成的材料)的一些实施方案中,枣树轴纤维可以由来自枣加工的废物副产物产生,并且轴纤维可以是从枣加工厂获得的,以提供可持续的颗粒材料来源。此外,当地的轴纤维来源可以降低输入lcm产品、组分或这两者的成本。在一些实施方案中,轴纤维可以从物种枣椰树(phoenixdactylifera)中获得。应当理解,在一些实施方案中,轴纤维可以从转基因枣树(即,转基因生物体(gmo))获得。在一些实施方案中,通过清洁纤维,例如通过在纤维上吹气以除去灰尘、垃圾和其他材料,然后使用工业研磨机切碎、粉碎和研磨纤维来制备枣树轴纤维。在一些实施方案中,可以通过筛来筛分经加工的纤维,以获得所需尺寸的纤维材料,以用于本文所述的lcm组合物。在一些实施方案中,枣树轴纤维可包括未经处理的枣树轴纤维,因此使制造方法、纤维和所得的lcm组合物保留了环境友好和可生物降解性质。如在本公开中所使用的,术语“未经处理的”或“没有处理的”是指未经碱处理或酸处理,未经漂白,未经化学改变,未经氧化,以及没有除可能的水分干燥之外的任何提取或反应过程。术语“未经处理的”或“没有处理的”不包括研磨或加热以除去水分,但包括可改变纤维特性或性质的化学或其他工艺。在这样的实施方案中,可以在粉碎、研磨、干燥或任何其他加工之前,期间或之后不经过处理而制造枣树纤维。在一些实施方案中,可以通过将携带液添加到lcm组合物,将颗粒材料(例如,火山灰)添加到lcm组合物,添加增粘剂并将纤维材料(例如,枣树的轴纤维)添加到lcm组合物来形成快速脱水的lcm组合物。在一些实施方案中,可以通过首先添加携带液,然后添加颗粒材料(例如,火山灰),然后添加增粘剂,再然后添加纤维材料(例如,枣树的轴纤维)来形成快速脱水的lcm组合物。可以通过在高速混合器中将携带液、颗粒材料、增粘剂和纤维材料混合并形成均质lcm混合物(例如均质流体段塞)来形成lcm组合物。在其他实施方案中,可以通过在高速混合器中将携带液、颗粒材料、增粘剂和纤维材料混合以形成均质lcm悬浮液或其他混合物来形成lcm组合物。在一些实施方案中,可在添加各组分后,将lcm组合物混合一段时间段(例如,在约4分钟至约5分钟的范围内)。在一些实施方案中,可在加入所有组分以形成均质lcm混合物之后将lcm组合物混合另一段时间(例如,在约10分钟至约15分钟的范围内)。在一些实施方案中,可以在没有任何添加剂或处理的情况下生产快速脱水的lcm组合物,因此使快速脱水的lcm组合物及制造方法均保留了环境友好和可生物降解性质。在其他实施方案中,快速脱水的lcm组合物可以与添加剂混合或以其他方式与添加剂组合或以其他方式处理。在一些实施方案中,添加剂可以与lcm混合或以其他方式与lcm组合以改变lcm的流变学或ph。在一些实施方案中,此类添加剂可包括软化剂、表面活化剂(表面活性剂)、粘度剂、稀释剂、分散剂、涂料(例如粒料涂料)、ph调节剂、杀虫剂、杀生物剂或其任何合适的组合。在一些实施方案中,可以将快速脱水的lcm组合物直接添加到钻井液(例如钻井泥浆)中,以产生包括lcm组合物的改良的钻井液。例如,在一些实施方案中,可以将快速脱水的lcm组合物添加到油基钻井泥浆或水基钻井泥浆中(例如,与油基钻井泥浆或水基钻井泥浆混合)。在一些实施方案中,可以在泥浆系统的泥浆坑中添加快速脱水的lcm组合物。在将快速脱水的lcm组合物添加到钻井液中之后,改良的钻井液可以以这样的泵速循环,该泵速可以有效地定位钻井液使其与井眼中的井漏区域接触,使得快速脱水的lcm组合物改良井漏区域(例如,通过进入并阻塞井漏区域中的地层中的多孔和可渗透路径、裂纹和裂缝,例如在裂缝中形成堵头)。如在本公开中所指出的,快速脱水的lcm组合物的机械性质可以防止快速脱水的lcm组合物的降解,同时作为防滤失剂或地层强化材料在井下循环。此外,快速脱水的lcm组合物的环保、无毒和环境友好性质可以最小化或防止任何环境影响,及对使用快速脱水的lcm组合物的钻井现场周围的生态系统、栖息地、种群、作物和植物的任何影响。在本公开中,范围可以表达为从约某个特定值,或至约另一个特定值,并包括这两者。当表示为这样的范围时,应当理解,另一实施方案是从一个特定值到其他特定值,或包括这两者,以及所述范围内的所有组合。在本申请中,在引用专利或出版物的情况下,这些参考文献的全部内容旨在通过引用并入本申请中,以便更全面地描述与本公开相关的现有技术的情况,除非这些参考文献与本申请中的陈述相矛盾。鉴于本说明书,本公开的各个方面的进一步修改和替代实施方案对本领域技术人员是明显的。因此,该说明书仅被解释为说明性的,并且是为了教导本领域技术人员实现本公开中描述的实施方案的一般方式。应理解,本公开中示出和描述的形式将被视为实施方案的实例。在不脱离所附权利要求中描述的公开内容的精神和范围的情况下,可以对本公开中描述的元素进行改变。本公开中使用的标题仅用于组织目的,并不意味着用于限制说明书的范围。当前第1页12