环保气体中新型棒电极表面涂覆层制备工艺的制作方法

文档序号:18553610发布日期:2019-08-30 22:18阅读:171来源:国知局

本发明属于新型电极表面涂覆材料的技术领域,更加具体地说,是涉及一种环保气体中新型棒电极表面涂覆层制备工艺。



背景技术:

电力系统在城市中具有着举足轻重的作用,是城市建设不可缺少重要设施。与传统的电力设备相比较,以气体作为绝缘介质的电力设备能够大大减小占地面积。其中,气体绝缘组合电器(gasinsulatedsubstation,简称gis)、气体绝缘变压器(gasinsulatedtransformer,简称git)、气体绝缘断路器(gasinsulatedbreaker,简称gib)、气体绝缘输电管道(gasinsulatedtransmissionline,简称gil)气体绝缘设备得到了广泛的应用。由于sf6其较强的电负性、优异的灭弧性能、化学稳定性好、导热性能好、不会析出碳粒,故在气体绝缘电力设备中,绝缘介质主要填充气体为sf6气体。

然而,在1997年,《联合国气候变化框架公约的京都议定书》被全球范围组织制定,其中明确将sf6列为6种限制性使用的温室气体之一,在2002年我国正式核准该条约,并在2009年宣布利用十年时间将单位gdp的温室气体排放降到2005年水平的55%~60%。欧盟计划在2030年将sf6排放量缩减到2014年的2/3,美国加州提出从2020年开始逐年降低电气领域sf6使用量。这是由于sf6气体被公认为一种对大气环境具有极大危害的温室气体,其温室效应潜能指数(globalwarmingpotential,gwp)为co2的23000倍。该气体能够破坏臭氧层,进而引起温室效应,引发全球气候变暖。但是sf6以平均8.7%/年的速度在大气层中快速增长,到本世纪初为止,sf6已经接近温室气体排放总量的15%。从国际大电网会议(internationalcouncilonlargeelectricsystems,cigre)近些年的讨论议题中不难发现sf6导致的气候恶化已经成为电力发展与环境保护矛盾的重要根源之一。大气中的sf6主要来源于电气设备的泄露以及废气的非法排放,约占总量的70%。电力工业中,高压开关设备约占sf6用气量的80%以上,主要是用在126-550kv,的gcb、git、gis、c-gis和gil等。尽管纯sf6气体没有毒性,不会对人体生命安全造成危害,但是由于sf6气体密度大,容易造成窒息死亡。同时,当电气设备内部出现局部放电(partialdischarge简称pd)时,sf6气体会发生不同程度的分解,生成sf2、sf3、sf4等低氟化物,在没有其他杂质存在的情况下,这些低氟化物会复合还原成sf6气体,不会影响设备的绝缘性能,也不会对人体造成危害。但是,sf6气体和电气设备中不可避免地会混入微量空气和水分等杂质,与sf6的分解物发生反应形成更多更复杂的生成物,如sof2、so2f2、sof4、so2、cf4、co2、hf、h2s等。其中,sof2、so2f2、h2s等气体分解物均为剧毒物质,一旦发生泄漏会会工作人员的身体健康造成危害,同时其中有些分解产物溶于水之后变成酸性物质,腐蚀设备内部组件,严重时会损坏设备内部的固体绝缘,从而使设备的整体绝缘性能降低,危及设备的安全运行。此外,sf6气体的绝缘强度也极容易受到极不均匀电场和电极表面粗糙程度的影响而急剧下降。

那么,在电气设备中找到方法替代sf6作为绝缘介质,是我们需要研究的方向。

申请人研究替代性绝缘气体介质中发现,在替代sf6中起到了不同的作用。有的可以替代其绝缘性能,如n2、干燥空气、cf3i气体等,有的在灭弧角度有着优异的性能,如co2、c-c4f8气体等。它们可以分为以下几种:采用传统n2、co2、干燥空气或sf6中混合气体。

第一种类型可以为co2、n2、干燥空气优点是有着较低的gwp值,但是其绝缘性能仅仅为sf6的40%或者更加少。如果采用这种类型的气体那么在高电压产品设计中会发生巨大改变,那么气体压力或者设备尺寸就会变为原来的至少2.5倍。该种气体主要应用在中压设备中,如12kv/24kv电压等级的n2或干燥空气环网柜;72.5kv电压等级co2断路器(gcb)。如果增加气体压力这将增加设备承压能力,同时也为安全性带来隐患;而如果增加尺寸,这将对原本就相对狭小的占地面积提出了相反的诉求。不幸的是,现有已知的气体中还没有哪种气体在各方面综合特性能够媲美sf6气体。由此看来替代sf6气体的道路任重而道远。

sf6中混合一定比例的n2、干燥空气等混合气体。

第二种气体就是sf6中混合气体。目前研究中,在sf6中混合一定比例的n2、cf4等气体。这样的混合气体可以降低sf6气体的使用量;防止气体绝缘介质在寒冷地区液化;并在寒冷地区起到灭弧作用。故混合气体应用在为gil和gcb中。但是这样的混合气体中由于含有sf6气体,所以仍然具有较高的gwp。

除了上述直接通过气体替代sf6的方式,也可以通过绝缘涂层-气体复合绝缘的方式替代sf6气体。这种方法较前几种寻找直接替换sf6气体,采用了涂层这一固体绝缘介质,而不仅仅再是靠单一气体介质。



技术实现要素:

发明目的:本发明的目的是针对现有技术不足和缺陷,本发明选用环氧树脂中的sio2,al2o3纳米填料,通过向环氧树脂中添加不同质量分数的纳米填料,逐步改变其介电性能。本发明还选择陶瓷粉末ysz、zta,应用超音速等离子体喷涂技术,将陶瓷在熔融状态下以超音速喷涂至电极表面,复合材料陶瓷由于氧化锆的增韧性,使得棒电极具有良好机械稳定性。

技术方案:为了实现上述目的,本发明所采用的技术方案为:

环保气体中新型棒电极表面涂覆层制备工艺,所述环保气体为n2气体,所述涂覆层为绝缘层,所述绝缘层为纳米sio2/ep涂层、纳米al2o3/ep涂层及陶瓷涂层中的一种。

当绝缘层为纳米sio2/ep涂层时,制备方法如下:

a1、选取环氧树脂ep、纳米sio2颗粒、固化剂、促进剂,选用尺寸为20–30nm的sio2颗粒;

b1、使用离心搅拌器将纳米sio2颗粒均匀地混合在环氧树脂ep中;

c1、按事先计算好的质量依次精密称取环氧树脂ep和纳米sio2颗粒混合物、固化剂、促进剂,并将它们倒入干净的容器中;

d1、上述容器通过thinkyare-310离心搅拌器,先以1000r·min–1搅拌5分钟,再以2000r·min–1搅拌10分钟,然后超声振动20分钟;

e1、将上述容器放入真空干燥箱中,去除之前由于离心搅拌和物料添加所引入的气泡;

f1、由步骤e得到充分混匀的环氧胶体,分为两部分,一部分用于涂覆在不锈钢棒电极的表面,另一部分用于制备表征的样品,涂覆工艺采用全自动的提拉镀膜机将sio2/ep涂覆在不锈钢棒电极表面,棒电极基体在胶体中浸渍30s,上升与下降的提拉速度控制为100mm·min–1

g1、将涂覆未固化胶体的电极转入恒温干燥箱中,先在60℃温度下处理120min,100℃温度下处理120min,150℃温度下处理120min,以使胶体充分固化,得到带纳米sio2/ep涂层的棒电极;

当绝缘层为纳米al2o3/ep涂层时,制备方法如下:

a2、按比例依次称取ep、固化剂、促进剂及al2o3,所述al2o3的粒径为30–40nm;

b2、将步骤a中的物料充分地离心搅拌以及超声震荡;

c2、将步骤b得到的成品转入真空干燥箱进行脱泡处理;

d2、经步骤c2处理之后,分为两份,分别通过提拉镀膜法制备电极涂层,通过多测厚仪对充分固化后的涂层的厚度进行测试,纳米al2o3/ep涂层厚度为75μm;

当绝缘层为陶瓷涂层时,制备方法如下:

a3、对不锈钢棒电极衬底用超声清洗器进行清洗并烘干,用氧化铝粉末对棒电极表面进行喷砂处理,通过表面光度仪测得喷砂处理后的棒电极表面粗糙度大约为6.3μm;

b3、采用超音速大气等离子喷涂saps技术将14wt%y2o3/zro2(ysz)球状颗粒和20wt%al2o3/zro2(asz)球状颗粒均匀地喷于棒电极表面;

所述14wt%y2o3/zro2(ysz)球状颗粒的尺寸为500μm,所述20wt%al2o3/zro2(asz)球状颗粒的尺寸为500μm,

所述saps系统配有一个具有拉瓦尔喷嘴的枪,拉瓦尔喷嘴的长度和直径分别为44mm和6mm,喷涂粉末被具有2mm直径的注射器注入到等离子体夹具中,陶瓷涂层的厚度为300μm—500μm。

当在棒电极表面涂覆绝缘层后,棒电极的击穿强度得到了有效地改善。

裸电极的50%击穿电压(u50)为71kv。

当使用ep、3wt%sio2/ep、2wt%al2o3/ep、ysz(500μm)、asz(500μm)作为绝缘涂层时,其50%击穿电压(u50)分别为78kv、90kv、92kv、88kv、86kv,相较裸电极均有大幅提升。

有益效果:本发明与现有技术相比,其有益效果是:

1、本发明采用带有sio2或al2o3纳米填料的环氧树脂作为绝缘涂层时,能够有效的改善棒电极的介电性能,同时增加棒电极的热稳定性。

2、本发明选用复合材料陶瓷作为绝缘涂层时,由于氧化锆的增韧性,使得棒电极具有良好机械稳定性。

3、本发明不管选用带有sio2或al2o3纳米填料的环氧树脂还是选用复合材料陶瓷作为绝缘涂层,绝缘性能得到极大提升。

具体实施方式

下面结合具体实施方式,进一步说明本发明。

环保气体中新型棒电极表面涂覆层制备工艺,所述环保气体为n2气体,所述涂覆层为绝缘层,其特征在于:所述绝缘层为纳米sio2/ep涂层、纳米al2o3/ep涂层及陶瓷涂层中的一种。

实施例一

当绝缘层为纳米sio2/ep涂层时,制备方法如下:

a1、选取环氧树脂ep、纳米sio2颗粒、固化剂、促进剂,选用尺寸为20–30nm的sio2颗粒;

b1、使用离心搅拌器将纳米sio2颗粒均匀地混合在环氧树脂ep中;

c1、按事先计算好的质量依次精密称取环氧树脂ep和纳米sio2颗粒混合物、固化剂、促进剂,并将它们倒入干净的容器中;

d1、上述容器通过thinkyare-310离心搅拌器,先以1000r·min–1搅拌5分钟,再以2000r·min–1搅拌10分钟,然后超声振动20分钟;

e1、将上述容器放入真空干燥箱中,去除之前由于离心搅拌和物料添加所引入的气泡;

f1、由步骤e得到充分混匀的环氧胶体,分为两部分,一部分用于涂覆在不锈钢棒电极的表面,另一部分用于制备表征的样品,涂覆工艺采用全自动的提拉镀膜机将sio2/ep涂覆在不锈钢棒电极表面,棒电极基体在胶体中浸渍30s,上升与下降的提拉速度控制为100mm·min–1

g1、将涂覆未固化胶体的电极转入恒温干燥箱中,先在60℃温度下处理120min,100℃温度下处理120min,150℃温度下处理120min,以使胶体充分固化,得到带纳米sio2/ep涂层的棒电极。

实施例二

当绝缘层为纳米al2o3/ep涂层时,制备方法如下:

a2、按比例依次称取ep、固化剂、促进剂及al2o3,所述al2o3的粒径为30–40nm;

b2、将步骤a中的物料充分地离心搅拌以及超声震荡;

c2、将步骤b得到的成品转入真空干燥箱进行脱泡处理;

d2、经步骤c2处理之后,分为两份,分别通过提拉镀膜法制备电极涂层,通过多测厚仪对充分固化后的涂层的厚度进行测试,纳米al2o3/ep涂层厚度为75μm。

实施例三

当绝缘层为陶瓷涂层时,制备方法如下:

a3、对不锈钢棒电极衬底用超声清洗器进行清洗并烘干,用氧化铝粉末对棒电极表面进行喷砂处理,通过表面光度仪测得喷砂处理后的棒电极表面粗糙度大约为6.3μm;

b3、采用超音速大气等离子喷涂saps技术将14wt%y2o3/zro2(ysz)球状颗粒和20wt%al2o3/zro2(asz)球状颗粒均匀地喷于棒电极表面;

所述14wt%y2o3/zro2(ysz)球状颗粒的尺寸为500μm,所述20wt%al2o3/zro2(asz)球状颗粒的尺寸为500μm,

所述saps系统配有一个具有拉瓦尔喷嘴的枪,拉瓦尔喷嘴的长度和直径分别为44mm和6mm,喷涂粉末被具有2mm直径的注射器注入到等离子体夹具中,陶瓷涂层的厚度为300μm—500μm。。

以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1