发蓝光znse1‑
x
te
x
合金纳米晶体的合成方法
技术领域
1.本发明属于纳米技术领域。更具体地,本发明涉及高发光纳米结构,特别是包括znse1‑
x
te
x
核和zns和/或znse壳层的高发光纳米结构。本发明还涉及产生这种纳米结构的方法。
背景技术:2.半导体纳米结构可以并入各种电子和光学设备中。这种纳米结构的电学和光学性质例如根据其组成、形状和尺寸而变化。例如,对于诸如发光二极管(led)、激光和生物医学标记等应用,半导体纳米颗粒的尺寸可调性质是非常感兴趣的。对于这种应用,特别需要高发光的纳米结构。
3.为了充分利用纳米结构在led和显示器等应用中的潜力,纳米结构需要同时满足五个标准:窄且对称的发射光谱,高光致发光(pl)量子产率(qy),高光学稳定性,生态环保友好的材料和低成本的批量生产方法。有关高发射和颜色可调的量子点的大多数先前研究都集中在含镉、汞或铅的材料上。wang,a.,et al.,nanoscale 7:2951
‑
2959(2015)。但是,越来越多人担心诸如镉、汞或铅等的有毒物质会对人类健康和环境造成严重威胁,并且欧盟的《有害物质限制规定》禁止禁止任何含有超过微量的这些材料的消费电子产品。因此,需要生产不含镉、汞和铅的材料来生产led和显示器。
4.具有bt.2020色域的电致发光量子点发光器件要求发射蓝光的量子点材料,其峰值波长在450nm至460nm范围内,半峰全宽(fwhm)小于30nm和高量子产率。为了符合法规要求,该材料必须不含镉和铅。
5.用无镉材料很难达到这些参数。如ning,j.,et al.,chem.commun.53:2626
‑
2629(2017)中所述,从魔术尺寸簇中生长的磷化铟量子点作为最小可想象核显示了460nm的最小光致发光峰(fwhm>50nm和低量子产率),并且在壳涂层时发生红移。如美国专利申请no.2017/0066965中所述,znse量子点可以制成具有非常尖锐的发射峰,并且在达到435nm的峰值波长处具有很高的量子产率,但是由于巨大核中电子
‑
孔重叠差,朝向目标波长的进一步颗粒生长导致明显的量子产率损失。
6.需要制备峰值波长在450nm至460nm范围内且fwhm小于30nm的纳米结构组合物。
技术实现要素:7.本发明提供一种纳米结构,其包括被至少一个壳包围的核,其中所述核包含znse1‑
x
te
x
,其中0<x<0.5,其中所述至少一个壳包括zns或znse,并且其中纳米结构的半峰全宽(fwhm)在约10nm至约30nm之间。
8.在一些实施方案中,纳米结构的发射波长为400nm至500nm。在一些实施方案中,纳米结构的发射波长为420nm至480nm。在一些实施方案中,纳米结构的发射波长为450nm至460nm。
9.在一些实施方案中,纳米结构包括被两个壳围绕的核。在一些实施方案中,至少一
个壳包含znse。在一些实施方案中,至少一个壳包含zns。
10.在一些实施方案中,至少一个壳包含3至5个znse单层。在一些实施方案中,至少一个壳包含约4个znse单层。
11.在一些实施方案中,至少一个壳包含3至5个的zns单层。在一些实施方案中,至少一个壳包含约4个zns单层。
12.在一些实施方案中,纳米结构的光致发光量子产率为30%至99%。在一些实施方案中,纳米结构的光致发光量子产率为50%至60%。
13.在一些实施方案中,纳米结构的fwhm为约20nm至约30nm。
14.在一些实施方案中,纳米结构包含两个壳,其中第一个壳包含znse,第二个壳包含zns。
15.在一些实施方案中,纳米结构是量子点。
16.在一些实施方案中,纳米结构不含镉。
17.在一些实施方案中,一种设备包括本发明的纳米结构。
18.本发明还提供一种制备znse1‑
x
te
x
纳米晶体的方法,该方法包括:
19.(a)将硒源和至少一种配体混合以产生反应混合物;和
20.(b)使(a)中获得的反应混合物与锌源和包含碲源、还原剂和羧酸锌的溶液接触;
21.从而提供znse1‑
x
te
x
纳米晶体。
22.在一些实施方案中,在(a)中混合的硒源选自:三辛基硒化膦,三(正丁基)硒化膦,三(仲丁基)硒化膦,三(叔丁基)硒化膦,三甲基硒化膦,三苯基硒化膦,二苯基硒化膦,苯基硒化膦,环己基硒化膦,辛硒醇,十二烷硒醇,苯硒酚,单质硒,硒化氢,双(三甲基甲硅烷基)硒醚及其混合物。
23.在一些实施方案中,在(a)中混合的硒源是硒化三辛基膦。
24.在一些实施方案中,在(a)中混合的至少一种配体选自:三辛基氧化膦,三辛基膦,二苯基膦,三苯基氧化膦和三丁基氧化膦。
25.在一些实施方案中,在(a)中混合的至少一种配体是三辛基膦。
26.在一些实施方案中,与(b)中的反应混合物接触的锌源选自:二乙基锌,二甲基锌,二苯基锌,乙酸锌,乙酰丙酮酸锌,碘化锌,溴化锌,氯化锌,氟化锌,碳酸锌,氰化锌,硝酸锌,氧化锌,过氧化锌,高氯酸锌和硫酸锌。
27.在一些实施方案中,(b)中与反应混合物接触的锌源是二乙基锌。
28.在一些实施方案中,(b)中与反应混合物接触的碲源选自:三辛基碲化膦,三(正丁基)碲化膦,三甲基碲化膦,三苯基碲化膦,三环己基碲化膦,单质碲,碲化氢,双(三甲基甲硅烷基)碲化物及其混合物。
29.在一些实施方案中,(b)中与反应混合物接触的碲源是三辛基碲化膦。
30.在一些实施方案中,(b)中与反应混合物接触的还原剂选自:乙硼烷,氢化钠,硼氢化钠,硼氢化锂,氰基硼氢化钠,氢化钙,氢化锂,氢化锂铝,氢化二异丁基铝,三乙基硼氢化钠和三乙基硼氢化锂。
31.在一些实施方案中,(b)中与反应混合物接触的还原剂是三乙基硼氢化锂。
32.在一些实施方案中,(b)中与反应混合物接触的羧酸锌选自:油酸锌,己酸锌,辛酸锌,月桂酸锌,肉豆蔻酸锌,棕榈酸锌,硬脂酸锌,二硫代氨基甲酸锌,或其混合物。
33.在一些实施方案中,(b)中与反应混合物接触的羧酸锌是油酸锌。
34.本发明还提供一种制备znse1
‑
xtex纳米晶体的方法,该方法包括:
35.(a)使硒源和至少一种配体混合以产生反应混合物;
36.(b)使(a)中获得的反应混合物与锌源和包含碲源、还原剂和羧酸锌的溶液接触;和
37.(c)使(b)中的反应混合物与锌源和硒源接触;
38.从而提供znse1‑
x
te
x
纳米晶体。
39.在一些实施方案中,(c)中与反应混合物接触的锌源选自:二乙基锌,二甲基锌,二苯基锌,乙酸锌,乙酰丙酮酸锌,碘化锌,溴化锌,氯化锌,氟化锌,碳酸锌,氰化锌,硝酸锌,氧化锌,过氧化锌,高氯酸锌和硫酸锌。
40.在一些实施方案中,(c)中与反应混合物接触的锌源是二乙基锌。
41.在一些实施方案中,(c)中与反应混合物接触的硒源选自:三辛基硒化膦,三(正丁基)硒化膦,三(仲丁基)硒化膦,三(叔丁基)硒化膦,三甲基硒化膦,三苯基硒化膦,二苯基硒化膦,苯基硒化膦,环己基硒化膦,辛硒醇,十二烷基硒醇,苯硒酚,单质硒,硒化氢,双(三甲基甲硅烷基)硒醚,及其混合物。
42.在一些实施方案中,(c)中与反应混合物接触的硒源是三辛基硒化膦。
43.在一些实施方案中,(a)中的混合的温度为250℃至350℃。在一些实施方案中,(a)中的混合的温度为约300℃。
44.在一些实施方案中,(b)中的接触的温度为250℃至350℃。在一些实施方案中,(b)中的接触的温度为约300℃。
45.在一些实施方案中,(b)中的接触还包含至少一种配体。
46.在一些实施方案中,(c)中的接触的温度为250℃至350℃。在一些实施方案中,(c)中的接触的温度为约300℃。
47.在一些实施方案中,(c)中的接触还包括至少一种配体。在一些实施方案中,至少一种配体是三辛基膦或二苯基膦。
48.在一些实施方案中,(a)中的硒源是三辛基硒化膦,(b)中的锌源是二乙基锌,(b)中的碲源是三辛基碲化膦,(b)中的还原剂为三乙基硼氢化锂,并且(b)中的羧酸锌为油酸锌。
49.在一些实施方案中,(a)和(c)中的硒源是硒化三辛基膦,(b)和(c)中的锌源是二乙基锌,(b)中的碲源是碲化三辛基膦,(b)中的还原剂是三乙基硼氢化锂,并且(b)中的羧酸锌是油酸锌。
50.本发明还提供一种制备znse1‑
x
te
x
纳米晶体的方法,该方法包括:
51.(a)将硒源和至少一种配体混合以产生反应混合物;和
52.(b)使(a)中获得的反应混合物与锌源和包含碲源、还原剂和羧酸锌的溶液接触;
53.(c)使(b)中的反应混合物与锌源和硒源接触;
54.(d)将(c)中的反应混合物与包含锌源的溶液混合;和
55.(e)使(d)的反应混合物与硒源或硫源接触;
56.提供znse1‑
x
te
x
纳米晶体。
57.本发明还提供一种制备znse1‑
x
te
x
纳米晶体的方法,该方法包括:
58.(a)将硒源和至少一种配体混合以产生反应混合物;和
59.(b)使(a)中获得的反应混合物与锌源和包含碲源、还原剂和羧酸锌的溶液接触;
60.(c)使(b)中的反应混合物与锌源和硒源接触;
61.(d)将(c)中的反应混合物与包含锌源的溶液混合;
62.(e)使(d)的反应混合物与硒源或硫源接触;和
63.(f)使(e)的反应混合物与硒源或硫源接触;
64.其中(e)中使用的源与(f)中使用的源不同;
65.从而提供znse1‑
x
te
x
纳米晶体。
66.在一些实施方案中,(d)中的混合的温度为20℃至310℃。在一些实施方案中,(d)中的混合的温度为20℃至100℃。
67.在一些实施方案中,(d)的锌源选自:二乙基锌,二甲基锌,二苯基锌,乙酸锌,乙酰丙酮酸锌,碘化锌,溴化锌,氯化锌,氟化锌,碳酸锌,氰化锌,硝酸锌,油酸锌,氧化锌,过氧化锌,高氯酸锌,硫酸锌,己酸锌,辛酸锌,月桂酸锌,肉豆蔻酸锌,棕榈酸锌,硬脂酸锌,二硫代氨基甲酸锌,油酸锌,己酸锌,辛酸锌,月桂酸锌,肉豆蔻酸锌,棕榈酸锌,硬脂酸锌,二硫代氨基甲酸锌或它们的混合物。
68.在一些实施方案中,(e)中的接触的温度为200℃至350℃。在一些实施方案中,(e)中的接触的温度为约310℃。
69.在一些实施方案中,在(e)中,使反应混合物与硒源接触。
70.在一些实施方案中,(e)中的硒源选自:三辛基硒化膦,三(正丁基)硒化膦,三(仲丁基)硒化膦,三(叔丁基)硒化膦,三甲基硒化膦,三苯基硒化膦,二苯基硒化膦,苯基硒化膦,环己基硒化膦,辛硒醇,十二烷硒醇,苯硒酚,单质硒,硒化氢,双(三甲基甲硅烷基)硒醚及其混合物。
71.在一些实施方案中,在(e)中,反应混合物与硫源接触。
72.在一些实施方案中,(e)中的硫源选自:单质硫,辛硫醇,十二烷硫醇,十八烷硫醇,三丁基硫化膦,环己基异硫氰酸酯,α
‑
甲苯硫酚,三硫代碳酸亚乙酯,烯丙基硫醇,双(三甲基甲硅烷基)硫醚,三辛基硫化膦及其混合物。
73.在一些实施方案中,(e)中的接触的温度为200℃至350℃。在一些实施方案中,(e)中的接触的温度为约310℃。
74.在一些实施方案中,在(f)中,反应混合物与硒源接触。
75.在一些实施方案中,在(f)中,硒源选自:三辛基硒化膦,三(正丁基)硒化膦,三(仲丁基)硒化膦,三(叔丁基)硒化膦,三甲基硒化膦,三苯基硒化膦,二苯基硒化膦,苯基硒化膦,环己基硒化膦,辛硒醇,十二烷硒醇,苯硒酚,单质硒,硒化氢,双(三甲基甲硅烷基)硒醚及其混合物。
76.在一些实施方案中,在(f)中,反应混合物与硫源接触。
77.在一些实施方案中,在(f)中,硫源选自:单质硫,辛硫醇,十二烷硫醇,十八烷硫醇,三丁基硫化膦,环己基异硫氰酸酯,α
‑
甲苯硫酚,三硫代碳酸亚乙酯,烯丙基硫醇,双(三甲基甲硅烷基)硫醚,三辛基硫化膦及其混合物。
78.在一些实施方案中,(d)中的混合还包含至少一种配体。在一些实施方案中,至少一种配体选自:三辛基氧化膦,三辛基膦,二苯基膦,三苯基氧化膦和三丁基氧化膦。在一些
实施方案中,至少一种配体是三辛基膦或三辛基氧化膦。
附图说明
79.图1是使用旧碲前体和新碲前体合成核的流程图。
80.图2显示了溶液中的znse量子点、使用旧碲前体制备的znse1‑
x
te
x
量子点和使用新碲前体制备的znse1‑
x
te
x
量子点的光致发光光谱。
81.图3示出了使用znse/zns量子点制备的发光设备以及使用新的碲前体制备的znse1‑
x
te
x
/znse/zns量子点的电致发光光谱。
具体实施方式
82.定义
83.除非另有定义,否则本文中使用的所有技术和科学术语具有与本发明所属领域的普通技术人员通常所理解的相同含义。以下定义是本领域技术人员的补充,并且是针对当前申请的,而不应归因于任何相关或不相关的情况,例如,任何共同拥有的专利或申请。尽管在实践中可以使用与本文描述的那些类似或等同的任何方法和材料来测试本发明,但是本文描述了优选的材料和方法。因此,本文所使用的术语仅出于描述特定实施例的目的,而无意于进行限制。
84.如本说明书和所附权利要求书中所使用的,单数形式“一个”、“一种”和“该”包括复数对象,除非上下文另外明确指出。因此,例如,提及“纳米结构”包括多个这样的纳米结构等。
85.如本文所用,术语“约”表示给定量的值变化了该值的+/
‑
10%,或值的+/
‑
5%或或值的+/
‑
1%。例如,“约100nm”涵盖从90nm至110nm(包括两端)的尺寸范围。
[0086]“纳米结构”是具有至少一个区域或特征尺寸的尺寸小于约500nm的结构。在一些实施方案中,纳米结构的尺寸小于约200nm,小于约100nm,小于约50nm,小于约20nm或小于约10nm。通常,区域或特征尺寸将沿着结构的最小轴。这样的结构的示例包括纳米线、纳米棒、纳米管、分支的纳米结构、纳米四脚架、三脚架、两脚架、纳米晶体、纳米点、量子点、纳米颗粒等。纳米结构可以是例如基本上结晶的、基本上单晶的、多晶的、无定形的或它们的组合。在一些实施方案中,纳米结构的三个维度中的每一个的尺寸都小于约500nm,小于约200nm,小于约100nm,小于约50nm,小于约20nm或小于约10nm。
[0087]
当涉及纳米结构使用时,术语“异质结构”是指特征为至少两种不同和/或可区分的材料类型的纳米结构。通常,纳米结构的一个区域包括第一材料类型,而纳米结构的第二区域包括第二材料类型。在某些实施方案中,纳米结构包括第一材料的核和第二(或第三等)材料的至少一个壳,其中不同的材料类型径向分布在纳米线的长轴例如分支纳米线的臂的长轴或纳米晶体的中心的周围。壳可以但不必完全覆盖被视为壳的相邻材料或被视为异质结构的纳米结构;例如,特征为覆盖有第二种材料的小岛的、一种材料的核的纳米晶体是异质结构。在其他实施方案中,不同的材料类型分布在纳米结构内的不同位置;例如,沿着纳米线的主(长)轴或沿着分支纳米线的臂的长轴。异质结构内的不同区域可以包括完全不同的材料,或者不同区域可以包括具有不同掺杂剂或不同浓度的相同掺杂剂的基础材料(例如,硅)。
[0088]
如本文所用,纳米结构的“直径”是指垂直于纳米结构的第一轴的横截面的直径,其中第一轴相对于第二轴和第三轴在长度上具有最大差异(第二轴和第三轴是长度彼此最接近的两个轴)。第一轴不一定是纳米结构的最长轴。例如,对于盘形纳米结构,横截面将是垂直于盘的短纵轴的基本上圆形的横截面。在横截面不是圆形的情况下,直径是该横截面的长轴和短轴的平均值。对于细长的或高纵横比的纳米结构,例如纳米线,在垂直于纳米线的最长轴的横截面上测量直径。对于球形纳米结构,直径是通过球的中心从一侧到另一侧进行测量的。
[0089]
当关于纳米结构使用时,术语“结晶的”或“基本上结晶的”是指纳米结构通常在结构的一个或多个维度上表现出长程有序的事实。本领域技术人员将理解,术语“长程有序”将取决于特定纳米结构的绝对尺寸,因为单晶的排序不能延伸到晶体边界之外。在这种情况下,“长程有序”将意味着至少在纳米结构的大部分尺寸上具有实质性的有序。在一些情况下,纳米结构可以带有氧化物或其他涂层,或者可以包括核和至少一个壳。在这样的情况下,将意识到,氧化物、壳或其他涂层可以但不必表现出这种有序性(例如,它可以是无定形的、多晶的或其他)。在这种情况下,短语“结晶的”、“基本上结晶的”、“基本上单晶的”或“单晶的”是指纳米结构的中心核(不包括涂层或壳)。本文所用的术语“结晶的”或“基本上结晶的”旨在还涵盖包含各种缺陷、堆积层错、原子取代等的结构,只要该结构表现出基本的长程有序性(例如,纳米结构或其核的至少一个轴的长度的约80%有序)。另外,将理解的是,核与纳米结构的外部之间或核与相邻的壳之间或壳与第二相邻的壳之间的界面可以包含非晶区域,甚至可以是无定形的。如本文所定义,这不会阻止纳米结构为晶体或基本上为晶体。
[0090]
当关于纳米结构使用时,术语“单晶”表示该纳米结构是基本上结晶的并且基本上包括单晶。当关于包含核和一个或多个壳的纳米结构异质结构使用时,“单晶”表示核基本上是结晶的并且基本上包括单晶。
[0091]“纳米晶体”是基本上单晶的纳米结构。因此,纳米晶体具有至少一个尺寸小于约500nm的区域或特征尺寸。在一些实施方案中,纳米晶体的尺寸小于约200nm,小于约100nm,小于约50nm,小于约20nm,或小于约10nm。术语“纳米晶体”旨在涵盖具有各种缺陷、堆叠层错、原子取代等的基本单晶纳米结构,以及没有此类缺陷、层错或取代的基本上单晶的纳米结构。在包含核和一个或多个壳的纳米晶体异质结构的情况下,纳米晶体的核通常是基本上单晶的,但是一个或多个壳不必是。在一些实施方案中,纳米晶体的三个维度中的每一个的尺寸都小于约500nm,小于约200nm,小于约100nm,小于约50nm,小于约20nm或小于约10nm。
[0092]
术语“量子点”(或“点”)是指表现出量子限制或激子限制的纳米晶体。量子点在材料性质上可以基本上是同质的,或者在某些实施方案中,可以是异质的,例如,包括核和至少一个壳。量子点的光学性质可能受其粒径、化学组成和/或表面组成的影响,并且可以通过本领域中可用的合适的光学测试来确定。定制纳米晶体尺寸(例如在约1nm与约15nm之间的范围内)的能力使得能够在整个光谱中覆盖光发射,从而在显色性方面提供了极大的通用性。
[0093]“配体”是一种能够与纳米结构的一个或多个面相互作用(无论弱或强)的分子,例如通过与纳米结构的表面共价、离子、范德华或其他分子相互作用。
[0094]“光致发光量子产率”是发射的光子与例如被纳米结构或纳米结构群吸收的光子之比。如本领域中已知的,量子产率通常通过比较方法使用具有已知量子产率值的充分表征的标准样品来确定。
[0095]“峰值发射波长”(pwl)是光源的辐射发射光谱达到最大值的波长。
[0096]
如本文所用,术语“壳”是指沉积在核上或者沉积在相同或不同组成的先前沉积的壳上的材料,其由壳材料的一次沉积动作产生。确切的壳厚度取决于材料以及前体的输入和转化,并且可以以纳米或单层报告。如本文所用,“目标壳厚度”是指用于计算所需前体量的预期壳厚度。如本文所用,“实际壳厚度”是指合成后壳材料的实际沉积量,并且可以通过本领域已知的方法测量。举例来说,可以通过比较在壳合成之前和之后从纳米晶体的透射电子显微镜(tem)图像确定的粒径来测量实际壳厚度。
[0097]
如本文所用,术语“单层”是源自壳材料的体晶结构的壳厚度的测量单位,作为相关晶格面之间的最接近距离。举例来说,对于立方晶格结构,一个单层的厚度确定为在[111]方向上相邻晶格平面之间的距离。举例来说,立方znse的一个单层对应于0.328nm,立方zns的一个单层对应于0.31nm的厚度。合金材料的单层厚度可以通过维格德定律(vegard's law)由合金组成确定。
[0098]
如本文中所使用的,术语“半峰全宽”(fwhm)是量子点的尺寸分布的量度。量子点的发射光谱通常具有高斯曲线的形状。高斯曲线的宽度定义为fwhm,并给出了粒子尺寸分布的概念。较小的fwhm对应于较窄的量子点纳米晶体尺寸分布。fwhm还取决于发射波长最大值。
[0099]
如本文所使用的,术语“外量子效率”(eqe)是从发光二极管(led)发射的光子数量与通过该器件的电子数量之比。eqe测量led将电子转换为光子并使电子逸出的效率。eqe可以使用以下公式测量:
[0100]
eqe=[注入效率]x[固态量子产率]x[提取效率]
[0101]
其中:
[0102]
注入效率=通过器件的被注入有源区的电子的比例;
[0103]
固态量子产率=有源区中是辐射的从而产生光子的所有电子空穴复合的比例;和提取效率=有源区中产生的从器件逸出的光子比例。
[0104]
除非另外明确指出,否则本文列出的范围是包括端点的。
[0105]
本文定义或以其他方式表征了各种附加术语。
[0106]
纳米结构的生产
[0107]
用于胶体合成多种纳米结构的方法是本领域已知的。这样的方法包括控制纳米结构生长的技术,例如,控制所得纳米结构的尺寸和/或形状分布。
[0108]
在典型的胶体合成中,通过将经历热解的前体快速注入到热溶液(例如,热溶剂和/或表面活性剂)中来生产半导体纳米结构。可以同时或顺序注射前体。前体迅速反应形成核。纳米结构的生长通过单体添加到核中而发生。
[0109]
表面活性剂分子与纳米结构的表面相互作用。在生长温度下,表面活性剂分子从纳米结构表面迅速吸附和解吸,从而允许从纳米结构添加和/或去除原子,同时抑制生长的纳米结构的聚集。通常,与纳米结构表面配位较弱的表面活性剂允许纳米结构的快速生长,而与纳米结构表面更牢固地结合的表面活性剂导致较慢的纳米结构生长。表面活性剂还可
与一种(或多种)前体相互作用以减慢纳米结构的生长。
[0110]
在单一表面活性剂存在下纳米结构的生长通常导致球形纳米结构。然而,使用两种或更多种表面活性剂的混合物,可以控制生长,使得如果例如两种(或更多种)表面活性剂不同地吸附到正在生长的纳米结构的不同结晶面上,则可以产生非球形纳米结构。
[0111]
因此,已知许多参数会影响纳米结构的生长,并且可以独立地或组合地对其进行操纵,以控制所得纳米结构的尺寸和/或形状分布。这些包括例如温度(成核和/或生长)、前体组成、时间依赖性前体浓度、前体彼此之间的比例、表面活性剂组成、表面活性剂数量以及表面活性剂彼此之间的比例和/或表面活性剂与前体的比例。
[0112]
ii
‑
vi族纳米结构的合成已经描述在例如在美国专利号6,225,198、6,322,901、6,207,229、6,607,829、7,060,243、7,374,824、6,861,155、7,125,605、7,566,476、8,158,193和8,101,234和美国专利申请公开号2011/0262752和2011/0263062中。
[0113]
尽管ii
‑
vi族纳米结构诸如cdse/cds/zns核/壳量子点可以表现出期望的发光行为,但是如上所述,诸如镉的毒性的问题限制了可以使用这种纳米结构的应用。因此,非常需要具有有利的发光性能的毒性较小的替代物。
[0114]
在一些实施方案中,纳米结构不含镉。如本文所用,术语“不含镉”是指纳米结构包含按重量计小于100ppm的镉。有害物质限制(rohs)符合性定义要求,原始均质前体材料中的镉重量不得超过0.01%(100ppm)。本发明的无cd纳米结构中的镉含量受到前体材料中痕量金属浓度的限制。用于无cd纳米结构的前体材料中的痕量金属(包括镉)浓度通过电感耦合等离子体质谱(icp
‑
ms)分析进行测量,并且处于十亿分之一(ppb)的水平。在一些实施方案中,“不含镉”的纳米结构包含小于约50ppm,小于约20ppm,小于约10ppm或小于约1ppm的镉。
[0115]
znse1‑
x
te
x
核的生产
[0116]
纳米结构包括znse1‑
x
te
x
核和zns壳、znse壳或它们的组合。在一些实施方案中,纳米结构是znse1‑
x
te
x
/znse/zns核/壳纳米结构。
[0117]
在一些实施方案中,纳米结构包含znse1‑
x
te
x
核,其中0<x<0.5、0<x<0.25、0<x<0.1、0<x<0.05、0<x<0.02、0<x<0.01、0.01<x<0.5、0.01<x<0.25、0.01<x<0.1、0.01<x<0.05、0.01<x<0.02、0.02<x<0.5、0.02<x<0.25、0.02<x<0.1,0.02<x<0.05、0.05<x<0.5、0.05<x<0.25、0.05<x<0.1、0.1<x<0.5、0.1<x<0.25或0.5<x<0.25。
[0118]
如本文所用,术语“成核相”是指znse1‑
x
te
x
核核心的形成。如本文所用,术语“生长相”是指将znse或zns层施加至核核心的生长过程。
[0119]
znse1‑
x
te
x
核的直径可以通过改变提供的前体的数量来控制。可以使用本领域技术人员已知的技术确定znse1‑
x
te
x
核的直径。在一些实施方案中,使用透射电子显微镜(tem)确定znse1‑
x
te
x
核的直径。
[0120]
在一些实施方案中,每个znse1‑
x
te
x
核的直径为约1.0nm至约7.0nm,约1.0nm至约6.0nm,约1.0nm至约5.0nm,约1.0nm至约4.0nm,约1.0nm至约3.0nm,约1.0nm至约2.0nm,约2.0nm至约7.0nm,约2.0nm至约6.0nm,约2.0nm至约5.0nm,约2.0nm至约4.0nm,约2.0nm约3.0nm,约3.0nm至约7.0nm,约3.0nm至约6.0nm,约3.0nm至约5.0nm,约3.0nm至约4.0nm,约4.0nm至约7.0nm,约4.0nm至约6.0nm,约4.0nm至约5.0nm,约5.0nm至约7.0nm,约5.0nm至约
6.0nm或约6.0nm至约7.0nm。在一些实施方案中,znse1‑
x
te
x
核的直径为约3.0nm至约5.0nm。
[0121]
在一些实施方案中,本发明提供了一种产生znse1‑
x
te
x
纳米晶体的方法,该方法包括:
[0122]
(a)将硒源和至少一种配体混合以产生反应混合物;和
[0123]
(b)使(a)中获得的反应混合物与锌源和包含碲源、还原剂和羧酸锌的溶液接触;
[0124]
从而提供znse1‑
x
te
x
纳米晶体。
[0125]
在一些实施方案中,该方法还包括:
[0126]
(c)使(b)中的反应混合物与锌源和硒源接触;
[0127]
提供znse1‑
x
te
x
纳米晶体。
[0128]
在一些实施方案中,硒源选自:三辛基硒化膦,三(正丁基)硒化膦,三(仲丁基)硒化膦,三(叔丁基)硒化膦,三甲基硒化膦,三苯基硒化膦,二苯基硒化膦,苯基硒化膦,环己基硒化膦,辛硒醇,十二烷硒醇,苯硒酚,单质硒,硒化氢,双(三甲基甲硅烷基)硒醚,及其混合物。在一些实施方案中,硒源是三辛基硒化膦(topse)。
[0129]
在一些实施方案中,锌源是二烷基锌化合物。在一些实施方案中,锌源是二乙基锌、二甲基锌、二苯基锌、乙酸锌、乙酰丙酮酸锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、氧化锌、过氧化锌、高氯酸锌或硫酸锌。在一些实施方案中,锌源是二乙基锌或二甲基锌。在一些实施方案中,锌源是二乙基锌。
[0130]
在一些实施方案中,分别制备包含碲源、还原剂和羧酸锌的溶液。在一些实施方案中,原位制备包含碲源、还原剂和羧酸锌的溶液。
[0131]
在一些实施方案中,通过使锌盐和羧酸反应来生产羧酸锌。
[0132]
在一些实施方案中,锌盐选自:乙酸锌,氟化锌,氯化锌,溴化锌,碘化锌,硝酸锌,三氟甲磺酸锌,甲苯磺酸锌,甲磺酸锌,氧化锌,硫酸锌,乙酰丙酮酸锌,甲苯
‑
3,4
‑
二硫酚锌,对甲苯磺酸锌,二乙基二硫代氨基甲酸锌,二苄基二硫代氨基甲酸锌,及其混合物。
[0133]
在一些实施方案中,羧酸选自:乙酸,丙酸,丁酸,戊酸,己酸,庚酸,辛酸,癸酸,十一烷酸,月桂酸,肉豆蔻酸,棕榈酸,硬脂酸,山嵛酸,丙烯酸,甲基丙烯酸,丁
‑2‑
烯酸,丁
‑3‑
烯酸,戊
‑2‑
烯酸,戊
‑4‑
烯酸,己
‑2‑
烯酸,己
‑3‑
烯酸,己
‑4‑
烯酸,己
‑5‑
烯酸,庚
‑6‑
烯酸,辛
‑2‑
烯酸,癸
‑2‑
烯酸,十一碳
‑
10
‑
烯酸,十二碳
‑5‑
烯酸酸,油酸,鳕油酸,芥酸,亚油酸,α
‑
亚麻酸,十八碳三烯酸,二十碳二烯酸,二十碳三烯酸,花生四烯酸,十八碳四烯酸,苯甲酸,对甲苯酸,邻甲苯酸,间甲苯酸,氢化肉桂酸,环烷酸,肉桂酸,对甲苯磺酸,及其混合物。
[0134]
在一些实施方案中,羧酸锌是硬脂酸锌或油酸锌。在一些实施方案中,羧酸锌是油酸锌。
[0135]
在一些实施方案中,碲源选自:三辛基碲化膦,三(正丁基)碲化膦,三甲基碲化膦,三苯基碲化膦,三环己基碲化膦,单质碲,碲化氢,双(三甲基甲硅烷基)碲化物及其混合物。在一些实施方案中,碲源是三辛基碲化膦(topte)。
[0136]
在一些实施方案中,还原剂选自:乙硼烷,氢化钠,硼氢化钠,硼氢化锂,氰基硼氢化钠,氢化钙,氢化锂,氢化铝锂,氢化二异丁基铝,三乙基硼氢化钠和三乙基硼氢化锂。在一些实施方案中,还原剂是三乙基硼氢化锂。
[0137]
根据密度泛函理论(dft)的计算,已知te原子在znse核的中心的定位将导致足够的红移,同时保持i型电子
‑
空穴的重叠。如美国专利号8,637,082中所述,改变整个量子点
集合中te原子的位置和数量可导致峰变宽。已知topte分解为元素te,然后仅缓慢还原为te2‑
。该反应与二乙基锌和topse之间的反应不匹配,并导致te原子掺入znse的程度低且控制不佳。如zhang,j.,et al.,j.phys.chem.c 112:5454
‑
5458(2008)中所述,改进的znte纳米材料由于将强还原剂与topte结合使用来促进te2‑
的形成而产生。
[0138]
使用羧酸锌代替二乙基锌防止元素锌的形成。
[0139]
在一些实施方案中,单独制备包含碲源、还原剂和羧酸锌的溶液。在一些实施方案中,碲溶液的制备方法包括:
[0140]
(a)混合碲源和配体以产生反应混合物;
[0141]
(b)使(a)中的反应混合物与还原剂接触;和
[0142]
(c)使(b)中的反应混合物与羧酸锌接触;
[0143]
产生碲溶液。
[0144]
在一些实施方案中,碲源与锌源的摩尔百分比为约1%至约14%,约1%至约12%,约1%至约10%,约1%至约8%,约1%至约6%,约1%至约4%,约1%至约2%,约2%至约14%,约2%至约12%,约2%至约10%,约2%至约8%,约2%至约6%,约2%至约4%,约4%至约14%,约4%至约12%,约4%至约10%,约4%至约8%,约4%至约6%,约6%至约14%,约6%至约12%,约6%至约10%,约6%至约8%,约8%至约14%,约8%至约12%,约8%至约10%,约10%至约14%,约10%至约12%,或约12%至约14%。在一些实施方案中,碲源与锌源的摩尔百分比为约6%至约10%。在一些实施方案中,碲源与锌源的摩尔百分比为约8%。
[0145]
在一些实施方案中,在至少一种纳米结构配体的存在下合成znse1‑
x
te
x
核。配体可以例如增强纳米结构在溶剂或聚合物中的可混溶性(允许纳米结构分布在整个组合物中,使得纳米结构不会聚集在一起),增加纳米结构的量子产率,和/或保持纳米结构的发光(例如,当纳米结构被并入基质中时)。在一些实施方案中,用于核合成和用于壳合成的配体是相同的。在一些实施方案中,用于核合成和用于壳合成的配体是不同的。合成后,可以将纳米结构表面上的任何配体交换为具有其他所需特性的不同配体。配体的实例在美国专利申请公开号2005/0205849、2008/0105855、2008/0118755、2009/0065764、2010/0140551、2013/0345458、2014/0151600、2014/0264189和2014/0001405中公开。
[0146]
在一些实施方案中,本领域技术人员已知适合于合成纳米结构核,包括znse1‑
x
te
x
核的配体。在一些实施方案中,配体是选自月桂酸、己酸、肉豆蔻酸、棕榈酸、硬脂酸和油酸的脂肪酸。在一些实施方案中,配体是选自三辛基氧化膦(topo)、三辛基膦(top)、二苯基膦(dpp)、三苯基氧化膦和三丁基氧化膦的有机膦或有机膦氧化物。在一些实施方案中,配体是选自十二烷基胺、油胺、十六烷基胺和十八烷基胺的胺。在一些实施方案中,配体是三辛基膦(top)。在一些实施方案中,配体是油胺。
[0147]
在一些实施方案中,在配体的混合物的存在下产生核。在一些实施方案中,在包含2、3、4、5或6种不同配体的混合物的存在下产生核。在一些实施方案中,在包含3种不同配体的混合物的存在下产生核。在一些实施方案中,配体的混合物包含油胺、二苯基膦和三辛基膦。
[0148]
在一些实施方案中,硒源和配体在以下反应温度下混合:250℃至350℃,250℃至320℃,250℃至300℃,250℃至290℃,250℃至280℃,250℃至270℃,270℃至350℃,270℃
至320℃,270℃至300℃,270℃至290℃,270℃至280℃,280℃至350℃,280℃至320℃,280℃至300℃,280℃至290℃,290℃至350℃,290℃至320℃,290℃至300℃,300℃至350℃,300℃至320℃或320℃至350℃。在一些实施方案中,硒源和配体在约300℃的反应温度下混合。
[0149]
在一些实施方案中,将硒源和配体混合后的反应混合物在升高的温度下保持2至20分钟、2至15分钟、2至10分钟、2至8分钟、2至5分钟、5至20分钟、5至15分钟、5至10分钟、5至8分钟、8至20分钟、8至15分钟、8至10分钟、10至20分钟、10至15分钟或15至20分钟。
[0150]
在一些实施方案中,将锌源和包含碲源、还原剂和羧酸锌的溶液添加到反应混合物中。在一些实施方案中,将锌源和包含碲源、还原剂和羧酸锌的溶液在以下反应温度下添加到反应混合物中:250℃至350℃,250℃至320℃,250℃至300℃,250℃至290℃,250℃至280℃,250℃至270℃,270℃至350℃,270℃至320℃,270℃至300℃,270℃至290℃,270℃至280℃,280℃至350℃,280℃至320℃,280℃至300℃,280℃至290℃,290℃至350℃,290℃至320℃,290℃至300℃,300℃至350℃,300℃至320℃或320℃至350℃。在一些实施方案中,将锌源和包含碲源、还原剂和羧酸锌的溶液在约300℃的反应温度下添加到配体源和硒源的混合物中。
[0151]
在一些实施方案中,在添加锌源和包含碲源、还原剂和羧酸锌的溶液之后,将反应混合物在升高的温度下保持2至20分钟、2至15分钟、2至10分钟、2至8分钟、2至5分钟、5至20分钟、5至15分钟、5至10分钟、5至8分钟、8至20分钟、8至15分钟、8至10分钟、10至20分钟、10至15分钟或15至20分钟。
[0152]
在一些实施方案中,在添加锌源和包含碲源、还原剂和羧酸锌的溶液之后,使反应混合物与锌源和硒源接触。在一些实施方案中,将锌源和硒源在以下反应温度下添加到反应混合物中:250℃至350℃,250℃至320℃,250℃至300℃,250℃至290℃,250℃至280℃,250℃至270℃,270℃至350℃,270℃至320℃,270℃至300℃,270℃至290℃,270℃至280℃,280℃至350℃,280℃至320℃,280℃至300℃,280℃至290℃,290℃至350℃,290℃至320℃,290℃至300℃,300℃至350℃,300℃至320℃或320℃至350℃。在一些实施方案中,将锌源和硒源在约280℃的反应温度下添加到反应混合物中。
[0153]
在一些实施方案中,在以下时间段内添加锌源和硒源:2至120分钟,2至60分钟,2至30分钟,2至20分钟,2至15分钟,2至10分钟,2至8分钟,2至5分钟,5至120分钟,5至60分钟,5至30分钟,5至20分钟,5至15分钟,5至10分钟,5至8分钟,8至120分钟,8至60分钟,8至30分钟,8至20分钟,8至15分钟,8至10分钟,10至120分钟,10至60分钟,10至30分钟,10至20分钟,10至15分钟,15至120分钟,15至60分钟,15至30分钟,15至20分钟,20至120分钟,20至60分钟,20至30分钟,30至120分钟,30至60分钟或60至120分钟。在一些实施方案中,在20至30分钟的时间内添加锌源和硒源。
[0154]
在一些实施方案中,在添加锌源和硒源之后,将反应混合物在升高的温度下保持2至20分钟、2至15分钟、2至10分钟、2至8分钟、2至5分钟、5至20分钟、5至15分钟、5至10分钟、5至8分钟、8至20分钟、8至15分钟、8至10分钟、10至20分钟、10至15分钟或15至20分钟。在一些实施方案中,在添加锌源和硒源之后,将反应混合物在升高的温度下保持2至10分钟。
[0155]
为了防止znse1‑
x
te
x
核在添加另外的前体时沉淀,可以在生长阶段添加另外的配体。如果在初始成核阶段添加过多的配体,则锌源、硒源和碲源的浓度会太低,并会阻止有
效成核。因此,配体在整个生长期缓慢添加。在一些实施方案中,另外的配体是油胺。
[0156]
在znse1‑
x
te
x
核达到所需的厚度和直径后,可以对其进行冷却。在一些实施方案中,将znse1‑
x
te
x
核冷却至室温。在一些实施方案中,添加有机溶剂以稀释包含znse1‑
x
te
x
核的反应混合物。
[0157]
在一些实施方案中,有机溶剂是己烷、戊烷、甲苯、苯、二乙醚、丙酮、乙酸乙酯、二氯甲烷(二氯甲烷)、氯仿、二甲基甲酰胺或n
‑
甲基吡咯烷酮。在一些实施方案中,有机溶剂是甲苯。
[0158]
在一些实施方案中,分离znse1‑
x
te
x
核。在一些实施方案中,通过从溶剂中沉淀znse1‑
x
te
x
来分离znse1‑
x
te
x
核。在一些实施方案中,通过用乙醇沉淀来分离znse1‑
x
te
x
核。
[0159]
在一些实施方案中,本发明的纳米结构的znse1‑
x
te
x
核具有的锌与硒的摩尔比为约1∶1至约1∶0.8,约1∶1至约1∶0.9,约1∶1至约1∶0.92,或约1∶1至约1∶0.94。
[0160]
在一些实施方案中,本发明的纳米结构的znse1‑
x
te
x
核具有的锌与碲的摩尔比为约1∶0.05至约1∶0.01,约1∶0.05至约1∶0.02,约1∶0.05至约1∶0.03,约1∶0.03至约1∶0.01,约1∶0.03至约1∶0.02,或约1∶0.02至约1∶0.01。
[0161]
壳的生产
[0162]
在一些实施方案中,本发明的纳米结构包括核和至少一个壳。在一些实施方案中,本发明的纳米结构包括核和至少两个壳。壳可以例如增加纳米结构的量子产率和/或稳定性。在一些实施方案中,核和壳包括不同的材料。在一些实施方案中,纳米结构包括不同壳材料的壳。
[0163]
在一些实施方案中,将包含ii族和vi族元素的混合物的壳沉积在核或核/壳结构上。在一些实施方案中,沉积的壳是锌源、硒源、硫源、碲源和镉源中的至少两种的混合物。在一些实施方案中,沉积的壳是锌源、硒源、硫源、碲源和镉源中的两种的混合物。在一些实施方案中,沉积的壳是锌源、硒源、硫源、碲源和镉源中的三种的混合物。在一些实施方案中,壳包含锌和硫;锌和硒;锌、硫和硒;锌和碲;锌、碲和硫;锌、碲和硒;锌、镉和硫;锌、镉和硒;镉和硫;镉和硒;镉、硒和硫;镉、锌和硫;镉、锌和硒;或镉、锌、硫和硒。
[0164]
在一些实施方案中,壳包括一个以上的壳材料单层。单层的数目是所有纳米结构的平均值;因此,壳中单层的数目可以是分数。在一些实施方案中,壳中单层的数目为0.25至10、0.25至8、0.25至7、0.25至6、0.25至5、0.25至4、0.25至3、0.25至2、2至10、2至8、2至7、2至6、2至5、2至4、2至3、3至10、3至8、3至7、3至6、3至5、3至4、4至10、4至8、4至7、4至6、4至5、5至10、5至8、5至7、5至6、6至10、6至8、6至7、7至10、7至8或8至10。在一些实施方案中,壳包含3至5个单层。
[0165]
可以通过改变所提供的前体的量来控制壳的厚度。对于给定的壳厚度,任选地以一定量提供至少一种前体,从而当生长反应基本完成时,获得预定厚度的壳。如果提供了一种以上的不同前体,则可以限制每种前体的量,或者可以以限制量提供一种前体,而提供过量的其他前体。
[0166]
每个壳的厚度可以使用本领域技术人员已知的技术确定。在一些实施方案中,通过比较添加每个壳之前和之后的纳米结构的平均直径来确定每个壳的厚度。在一些实施方案中,在每个壳添加之前和之后,纳米结构的平均直径通过tem确定。在一些实施方案中,每个壳的厚度为0.05nm至3.5nm,0.05nm至2nm,0.05nm至0.9nm,0.05nm至0.7nm,0.05nm至
0.5nm,0.05nm至0.3nm,0.05nm至0.1nm,0.1nm至3.5nm,0.1nm至2nm,0.1nm至0.9nm,0.1nm至0.7nm,0.1nm至0.5nm,0.1nm至0.3nm,0.3nm至3.5nm,0.3nm至2nm,0.3nm至0.9nm,0.3nm至0.7nm,0.3nm至0.5nm,0.5nm至3.5nm,0.5nm至2nm,0.5nm至0.9nm,0.5nm至0.7nm,0.7nm至3.5nm,0.7nm至2nm,0.7nm至0.9nm,0.9nm至3.5nm,0.9nm至2nm或2nm至3.5nm。
[0167]
在一些实施方案中,每个壳在至少一种纳米结构配体的存在下合成。配体可以例如增强纳米结构在溶剂或聚合物中的可混溶性(允许纳米结构分布在整个组合物中,使得纳米结构不会聚集在一起),增加纳米结构的量子产率,和/或保持纳米结构的发光(例如,当纳米结构被并入基质中时)。在一些实施方案中,用于核合成和用于壳合成的配体是相同的。在一些实施方案中,用于核合成和用于壳合成的配体是不同的。合成后,可以将纳米结构表面上的任何配体交换为具有其他所需特性的其他配体。配体的实例在美国专利号7,572,395、8,143,703、8,425,803、8,563,133、8,916,064、9,005,480、9,139,770和9,169,435中以及在美国专利申请公开号2008/0118755中公开。
[0168]
适合于合成壳的配体是本领域技术人员已知的。在一些实施方案中,配体是选自月桂酸、己酸、辛酸、肉豆蔻酸、棕榈酸、硬脂酸和油酸中的脂肪酸。在一些实施方案中,配体是选自三辛基氧化膦(topo)、三辛基膦(top)、二苯基膦(dpp)、三苯基氧化膦和三丁基氧化膦的有机膦或有机膦氧化物。在一些实施方案中,配体是选自十二烷基胺、油胺、十六烷基胺、二辛基胺和十八烷基胺的胺。在一些实施方案中,配体是三辛基氧化膦、三辛基膦或月桂酸。
[0169]
在一些实施方案中,在配体的混合物的存在下产生每个壳。在一些实施方案中,在包含2、3、4、5或6种不同配体的混合物的存在下产生每个壳。在一些实施方案中,在包含3种不同配体的混合物的存在下产生每个壳。在一些实施方案中,配体的混合物包含三丁基氧化膦、三辛基膦和月桂酸。
[0170]
在一些实施方案中,在溶剂的存在下产生每个壳。在一些实施方案中,溶剂选自1
‑
十八碳烯、1
‑
十六碳烯、1
‑
二十碳烯、二十烷、十八烷、十六烷、十四烷、角鲨烯、角鲨烷、三辛基氧化膦和二辛基醚。
[0171]
在一些实施方案中,将核或核/壳与壳前体在以下温度下混合:20℃至310℃,20℃至280℃,20℃至250℃,20℃至200℃,20℃至150℃,20℃至100℃,20℃至50℃,50℃至310℃,50℃至280℃,50℃至250℃,50℃至200℃,50℃至150℃,50℃至100℃,100℃至310℃,100℃至280℃,100℃至250℃,100℃至200℃,100℃至150℃,150℃至310℃,150℃至280℃,150℃至250℃,150℃至200℃,200℃至310℃,200℃至280℃,200℃至250℃,250℃至310℃,250℃至280℃或280℃至310℃。在一些实施方案中,将核或核/壳和壳前体在20℃至100℃之间的温度下混合。
[0172]
在一些实施方案中,在将核或核/壳与壳前体混合之后,将反应混合物的温度升高至以下的升高的温度:200℃至310℃,200℃至280℃,200℃至250℃,200℃至220℃,220℃至310℃,220℃至280℃,220℃至250℃,250℃至310℃,250℃至280℃,或280℃至310℃。在一些实施方案中,在使核或核/壳与壳前体接触之后,将反应混合物的温度升高至250℃至310℃之间。
[0173]
在一些实施方案中,在将核或核/壳与壳前体混合后,温度达到升高的温度的时间为:2至240分钟,2至200分钟,2至100分钟,2至60分钟,2至40分钟,5至240分钟,5至200分
钟,5至100分钟,5至60分钟,5至40分钟,10至240分钟,10至200分钟,10至100分钟,10至60分钟,10至40分钟,40至240分钟,40至200分钟,40至100分钟,40至60分钟,60至240分钟,60至200分钟,60至100分钟,100至240分钟,100至200分钟,或200至240分钟。
[0174]
在一些实施方案中,在将核或核/壳与壳前体混合之后,将反应混合物的温度在升高的温度下保持2至240分钟、2至200分钟、2至100分钟、2至60分钟、2至40分钟、5至240分钟、5至200分钟、5至100分钟、5至60分钟、5至40分钟、10至240分钟、10至200分钟、10至100分钟、10至60分钟、10至40分钟、40至240分钟、40至200分钟、40至100分钟、40至60分钟、60至240分钟、60至200分钟、60至100分钟、100至240分钟、100至200分钟、或200至240分钟。在一些实施方案中,在将核或核/壳与壳前体混合之后,将反应混合物的温度在升高的温度下保持30至120分钟。
[0175]
在一些实施方案中,通过进一步添加添加到反应混合物中的壳材料前体,然后保持在升高的温度,来生产另外的壳。通常,在先前的壳的反应基本完成之后(例如,当至少一种先前的前体从反应中耗尽或去除时,或者当无法检测到另外的生长时)提供另外的壳前体。前体的进一步添加产生了另外的壳。
[0176]
在一些实施方案中,在添加另外的壳材料前体以进一步提供壳之前,冷却纳米结构。在一些实施方案中,在添加壳材料前体以进一步提供壳之前,将纳米结构保持在高温下。
[0177]
在已经添加足够的壳层以使纳米结构达到期望的厚度和直径之后,可以冷却纳米结构。在一些实施方案中,将核/壳纳米结构冷却至室温。在一些实施方案中,添加有机溶剂以稀释包含核/壳纳米结构的反应混合物。
[0178]
在一些实施方案中,用于稀释反应混合物的有机溶剂是乙醇、己烷、戊烷、甲苯、苯、二乙醚、丙酮、乙酸乙酯、二氯甲烷(亚甲基氯)、氯仿、二甲基甲酰胺或n
‑
甲基吡咯烷酮。在一些实施方案中,有机溶剂是甲苯。
[0179]
在一些实施方案中,分离核/壳纳米结构。在一些实施方案中,使用有机溶剂通过沉淀来分离核/壳纳米结构。在一些实施方案中,用乙醇通过絮凝分离核/壳纳米结构。
[0180]
单层的数目将决定核/壳纳米结构的尺寸。核/壳纳米结构的尺寸可以使用本领域技术人员已知的技术来确定。在一些实施方案中,使用tem确定核/壳纳米结构的尺寸。在一些实施方案中,核/壳纳米结构的平均直径为1nm至15nm、1nm至10nm、1nm至9nm、1nm至8nm、1nm至7nm、1nm至6nm、1nm至5nm、5nm至15nm、5nm至10nm、5nm至9nm、5nm至8nm、5nm至7nm、5nm至6nm、6nm至15nm、6nm至10nm、6nm至9nm、6nm至8nm、6nm至7nm、7nm至15nm、7nm至10nm、7nm至9nm、7nm至8nm、8nm至15nm、8nm至10nm、8nm至9nm、9nm至15nm、9nm至10nm或10nm至15nm。在一些实施方案中,核/壳纳米结构的平均直径为6nm至7nm。
[0181]
在一些实施方案中,在沉积另外的壳之前,对核/壳纳米结构进行酸蚀刻步骤。
[0182]
znse壳的生产
[0183]
在一些实施方案中,沉积在核或核/核/壳纳米结构上的壳是znse壳。
[0184]
在一些实施方案中,与核或核/壳纳米结构接触以制备znse壳的壳前体包含锌源和硒源。
[0185]
在一些实施方案中,锌源是二烷基锌化合物。在一些实施方案中,锌源是羧酸锌。在一些实施方案中,锌源是二乙基锌、二甲基锌、乙酸锌、乙酰丙酮酸锌、碘化锌、溴化锌、氯
化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、油酸锌、氧化锌、过氧化锌、高氯酸锌、硫酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌或其混合物。在一些实施方案中,锌源是油酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌或其混合物。在一些实施方案中,锌源是油酸锌。
[0186]
在一些实施方案中,硒源是烷基取代的硒脲。在一些实施方案中,硒源是硒化膦。在一些实施方案中,硒源选自:三辛基硒化膦,三(正丁基)硒化膦,三(仲丁基)硒化膦,三(叔丁基)硒化膦,三甲基硒化膦,三苯基硒化膦,二苯基硒化膦,苯基硒化膦,三环己基硒化膦,环己基硒化膦,1
‑
辛硒醇,1
‑
十二烷硒醇,苯硒酚,单质硒,硒化氢,双(三甲基甲硅烷基)硒醚,硒脲,及其混合物。在一些实施方案中,硒源是三(正丁基)硒化膦、三(仲丁基)硒化膦或三(叔丁基)硒化膦。在一些实施方案中,硒源是三辛基硒化膦。
[0187]
在一些实施方案中,制备znse壳的核与锌源的摩尔比为1:2至1:1000、1:2至1:100、1:2至1:50、1:2至1:25、1:2至1:15、1:2至1:10、1:2至1:5、1:5至1:1000、1:5至1:100、1:5至1:50、1:5至1:25、1:5至1:15、1:5至1:10、1:10至1:1000、1:10至1:100、1:10至1:50,1:10至1:25、1:10至1:15、1:15至1:1000、1:15至1:100、1:15至1:50、1:15至1:25、1:25至1:1000、1:25至1:100、1:25至1:50、1:50至1:1000、1:50至1:100或1:100至1:1000。
[0188]
在一些实施方案中,制备znse壳的核与硒源的摩尔比为1:2至1:1000、1:2至1:100、1:2至1:50、1:2至11:25、1:2至1:15、1:2至1:10、1:2至1:5、1:5至1:1000、1:5至1:100、1:5至1:50、1:5至1:25、1:5至1:15、1:5至1:10、1:10至1:1000、1:10至1:100、1:10至1:50,1:10至1:25、1∶10至1∶15、1∶15至1∶1000、1∶15至1∶100、1∶15至1∶50、1∶15至1∶25、1∶25至1∶1000、1∶25至1∶100、1∶25至1∶50、1∶50至1∶1000、1∶50至1∶100或1∶100至1∶1000。
[0189]
在一些实施方案中,znse壳中单层的数目为0.25至10、0.25至8、0.25至7、0.25至6、0.25至5、0.25至4、0.25至3、0.25至2、2至10、2至8、2至7、2至6、2至5、2至4、2至3、3至10、3至8、3至7、3至6、3至5、3至4、4至10、4至8、4至7、4至6、4至5、5至10、5至8、5至7、5至6、6至10、6至8、6至7、7至10、7至8、或8至10。在一些实施方案中,znse壳包含2至6个单层。在一些实施方案中,znse壳包含3至5个单层。
[0190]
在一些实施方案中,znse单层的厚度为约0.328nm。
[0191]
在一些实施方案中,znse壳的厚度为0.08nm至3.5nm、0.08nm至2nm、0.08nm至0.9nm、0.08nm至0.7nm、0.08nm至0.5nm、0.08nm至0.2nm、0.2nm至3.5nm、0.2nm至2nm、0.2nm至0.9nm、0.2nm至0.7nm、0.2nm至0.5nm、0.5nm至3.5nm、0.5nm至2nm、0.5nm至0.9nm、0.5nm至0.7nm、0.7nm至3.5nm、0.7nm至2nm、0.7nm至0.9nm、0.9nm至3.5nm、0.9nm至2nm或2nm至3.5nm。
[0192]
zns壳的生产
[0193]
在一些实施方案中,沉积在核或核/壳纳米结构上的壳是zns壳。
[0194]
在一些实施方案中,与核或核/核/壳纳米结构接触以制备zns壳的壳前体包含锌源和硫源。
[0195]
在一些实施方案中,zns壳使粒子表面处的缺陷钝化,这导致当在诸如led和激光器的设备中使用时,量子产率提高和达到更高的效率。此外,可以通过钝化消除由缺陷状态引起的光谱杂质,这增加了颜色饱和度。
[0196]
在一些实施方案中,锌源是二烷基锌化合物。在一些实施方案中,锌源是羧酸锌。
在一些实施方案中,锌源是二乙基锌、二甲基锌、乙酸锌、乙酰丙酮酸锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、油酸锌、氧化锌、过氧化锌、高氯酸锌、硫酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌或其混合物。在一些实施方案中,锌源是油酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌或其混合物。在一些实施方案中,锌源是油酸锌。
[0197]
在一些实施方案中,硫源选自单质硫、辛硫醇、十二烷硫醇、十八烷硫醇、三丁基硫化膦、环己基异硫氰酸酯、α
‑
甲苯硫醇、三硫代碳酸亚乙酯、烯丙基硫醇、双(三甲基甲硅烷基)硫醚、三辛基硫化膦及其混合物。在一些实施方案中,硫源是烷基取代的二硫代氨基甲酸锌。在一些实施方案中,硫源是辛硫醇。在一些实施方案中,硫源是三丁基硫化膦。
[0198]
在一些实施方案中,制备zns壳的核与锌源的摩尔比为1:2至1:1000、1:2至1:100、1:2至1:50、1:2至1 1:25、1:2至1:15、1:2至1:10、1:2至1:5、1:5至1:1000、1:5至1:100、1:5至1:50、1:5至1:25、1:5至1:15、1:5至1:10、1:10至1:1000、1:10至1:100、1:10至1:50、1:10至1:25、1:10至1:15、1:15至1:1000、1:15至1:100、1:15至1:50、1:15至1:25、1:25至1:1000、1:25至1:100、1:25至1:50、1:50至1:1000、1:50至1:100或1:100至1:1000。
[0199]
在一些实施方案中,制备zns壳的核与硫源的摩尔比为1:2至1:1000、1:2至1:100、1:2至1:50、1:2至1:25、1:2至1:15、1:2至1:10、1:2至1:5、1:5至1:1000、1:5至1:100、1:5至1:50、1:5至1:25、1:5至1:15、1:5至1:10、1:10至1:1000、1:10至1:100、1:10至1:50、1:10至1:25、1:10至1:15、1:15至1:1000、1:15至1:100、1:15至1:50、1:15至1:25、1:25至1:1000、1:25至1:100、1:25至1:50、1:50至1:1000、1:50至1:100或1:100至1:1000。
[0200]
在一些实施方案中,zns壳中单层的数目为0.25至10、0.25至8、0.25至7、0.25至6、0.25至5、0.25至4、0.25至3、0.25至2、2至10、2至8、2至7、2至6、2至5、2至4、2至3、3至10、3至8、3至7、3至6、3至5、3至4、4至10、4至8、4至7、4至6、4至5、5至10、5至8、5至7、5至6、6至10、6至8、6至7、7以及10、7至8或8至10。在一些实施方案中,zns壳包含2至12个单层。在一些实施方案中,zns壳包含4至6个单层。
[0201]
在一些实施方案中,zns单层的厚度为约0.31nm。
[0202]
在一些实施方案中,zns壳的厚度为0.08nm至3.5nm、0.08nm至2nm、0.08nm至0.9nm、0.08nm至0.7nm、0.08nm至0.5nm、0.08nm至0.2nm、0.2nm至3.5nm、0.2nm至2nm、0.2nm至0.9nm、0.2nm至0.7nm、0.2nm至0.5nm、0.5nm至3.5nm、0.5nm至2nm、0.5nm至0.9nm、0.5nm至0.7nm、0.7nm至3.5nm、0.7nm至2nm、0.7nm至0.9nm、0.9nm至3.5nm、0.9nm至2nm或2nm至3.5nm。
[0203]
核/壳纳米结构
[0204]
在一些实施方案中,核/壳纳米结构是znse1‑
x
te
x
/znse/zns核/壳纳米结构。在一些实施方案中,核/壳纳米结构是znse1‑
x
te
x
/znse/zns核/壳量子点。
[0205]
在一些实施方案中,核/壳纳米结构显示出高的光致发光量子产率。在一些实施方案中,核/壳纳米结构显示出以下的光致发光量子产率:30%至99%,30%至95%,30%至90%,30%至85%,30%至80%,30%至60%,30%至50%,30%至40%,40%至99%,40%至95%,40%至90%,40%至85%,40%至80%,40%至60%,40%至50%,50%至99%,50%至95%,50%至90%,50%至85%,60%至99%,60%至95%,60%至85%,80%至99%,80%至90%,80%至85%,85%至99%或85%至95%。在一些实施方案中,核/壳纳米结构显示出
50%至60%的光致发光量子产率。
[0206]
在一些实施方案中,核/壳纳米结构的光致发光光谱的发射最大值为:300nm至590nm,300nm至550nm,300nm至450nm,450nm至590nm,450nm至550nm或550nm至590nm。在一些实施方案中,核/壳纳米结构的光致发光光谱的发射最大值为450nm至590nm。在一些实施方案中,核/壳纳米结构的光致发光光谱的发射最大值为450nm至460nm。
[0207]
核/壳纳米结构的尺寸分布可以相对窄。在一些实施方案中,群体或核/壳纳米结构的光致发光光谱的半峰全宽可为10nm至60nm、10nm至40nm、10nm至30nm、10nm至20nm、20nm至60nm、20nm至40nm、20nm至30nm、30nm至60nm、30nm至40nm、或40nm至60nm。在一些实施方案中,群体或核/壳纳米结构的光致发光光谱的半峰全宽可为20nm至30nm。
[0208]
产生的核/壳纳米结构任选地嵌入基质中(例如,有机聚合物,含硅聚合物,无机物、玻璃质和/或其他基质),用于生产纳米结构磷光体,以及/或并入设备中,例如led、背光源、筒灯或其他显示或发光单元或滤光器。示例性的磷光体和发光单元可以例如通过并入具有在期望波长处或附近的发射最大值的纳米结构群来产生特定色光或通过并入具有不同发射最大值的两个或更多个不同的纳米结构群来产生宽色域。多种合适的基质是本领域已知的。参见,例如,美国专利号7,068,898和美国专利申请公开号2010/0276638、2007/0034833和2012/0113672。示例性的纳米结构磷光体膜、led、背光单元等在例如美国专利申请公开号2010/0276638、2012/0113672、2008/0237540、2010/0110728和2010/0155749,以及美国专利号7,374,807、7,645,397、6,501,091和6,803,719中描述。
[0209]
由所述方法得到的核/壳纳米结构也是本发明的特征。因此,一类实施方案提供了核/壳纳米结构群。在一些实施方案中,核/壳纳米结构是量子点。
[0210]
纳米结构层
[0211]
在一些实施方案中,本公开提供了一种包含至少一个纳米结构群的纳米结构层,其中所述纳米结构包含znse1‑
x
te
x
核和至少一个壳,其中0<x<1并且所述至少一个壳包含zns或znse。
[0212]
在一些实施方案中,纳米结构的fwhm为约15至约30。
[0213]
在一些实施方案中,纳米结构是量子点。
[0214]
模制品
[0215]
在一些实施方案中,本公开提供了包含至少一个纳米结构群的模制品,其中所述纳米结构包含znse1‑
x
te
x
核和至少一个壳,其中0<x<1,并且所述至少一个壳包括zns或znse。
[0216]
在一些实施方案中,纳米结构的fwhm为约15至约30。
[0217]
在一些实施方案中,模制品是膜、用于显示器的衬底或发光二极管。
[0218]
在一些实施方案中,纳米结构是量子点。
[0219]
在一些实施方案中,本公开提供了一种模制品,其包括:
[0220]
(a)第一阻挡层;
[0221]
(b)第二阻挡层;和
[0222]
(c)在第一阻挡层和第二阻挡层之间的纳米结构层,其中该纳米结构包括znse1‑
x
te
x
核和至少一个壳,其中0<x<1,并且至少一个壳包括zns或znse。
[0223]
在一些实施方案中,模制品的fwhm为约15至约30。
[0224]
在一些实施方案中,模制品是量子点。
[0225]
制作纳米结构层
[0226]
在一些实施方案中,纳米结构层可以嵌入在聚合物基质中。如本文所用,术语“嵌入”用于表示纳米结构群被构成基质的大部分组分的聚合物所包围或包裹。在一些实施方案中,至少一个纳米结构群适当地均匀地分布在整个基质中。在一些实施方案中,所述至少一个纳米结构群根据特定应用的分布而分布。在一些实施方案中,将纳米结构混合在聚合物中并施加到衬底的表面上。
[0227]
在一些实施方案中,沉积纳米结构组合物以形成纳米结构层。在一些实施方案中,纳米结构组合物可以通过本领域已知的任何合适的方法来沉积,所述方法包括但不限于:涂覆,喷涂,溶剂喷涂,湿法涂覆,粘合剂涂覆,旋涂,胶带涂覆,辊涂,流涂,喷墨蒸气喷射,滴铸,刮涂,薄雾沉积或它们的组合。纳米结构组合物可以直接涂覆在所需的衬底层上。或者,纳米结构组合物可以作为独立元素形成为固体层,然后施加至衬底。在一些实施方案中,纳米结构组合物可以沉积在一个或多个阻挡层上。
[0228]
在一些实施方案中,纳米结构层在沉积之后被固化。合适的固化方法包括光固化,诸如uv固化,和热固化。传统的层压膜加工方法、胶带涂覆方法和/或卷对卷制造方法可用于形成纳米结构层。
[0229]
旋涂
[0230]
在一些实施方案中,使用旋涂将纳米结构组合物沉积到衬底上。在旋涂中,通常将少量材料沉积到装载到称为旋涂器的机器上的衬底中心上,该机器通过真空固定。通过旋转器将高速旋转施加到衬底上,这使向心力将材料从衬底的中心散布到衬底的边缘。当大多数材料被甩出时,一定量的衬底会残留下来,随着旋转的继续在表面上形成一层材料薄膜。膜的最终厚度除了由为旋涂工艺选择的参数(如旋转速度、加速度和旋转时间)外,还取决于沉积材料和衬底的性质。在一些实施方案中,使用1500rpm至6000rpm的旋转速度以及10至60秒的旋转时间。
[0231]
薄雾沉积
[0232]
在一些实施方案中,使用薄雾沉积将纳米结构组合物沉积到衬底上。薄雾沉积在室温和大气压下发生,并且可以通过改变工艺条件来精确控制薄膜厚度。在薄雾沉积期间,液体源材料变成非常细的薄雾,并被氮气携带到沉积室。然后,通过场屏和晶片保持器之间的高压电压将雾吸引到晶片表面。一旦液滴在晶片表面上聚结,就将晶片从腔室中取出并进行热固化,以使溶剂蒸发。液体前体是溶剂和待沉积材料的混合物。通过加压氮气将其带入雾化器。price,s.c等,
″
formation of ultra
‑
thin quantum dot films by mist deposition,
″
esc transactions 11:89
‑
94(2007).
[0233]
喷涂
[0234]
在一些实施方案中,使用喷涂将纳米结构组合物沉积在衬底上。用于喷涂的典型设备包括喷嘴、雾化器、前体溶液和载气。在喷雾沉积过程中,通过载气或通过雾化(例如,超声、鼓风或静电)将前体溶液粉碎成微滴。从雾化器出来的液滴在载气的帮助下通过喷嘴被衬底表面加速,该载气可根据需要进行控制和调节。为了完全覆盖衬底,通过设计确定喷嘴和衬底之间的相对运动。
[0235]
在一些实施方案中,纳米结构组合物的施加还包括溶剂。在一些实施方案中,用于
施加纳米结构组合物的溶剂是水、有机溶剂、无机溶剂、卤代有机溶剂或它们的混合物。示例性的溶剂包括但不限于:水,d2o,丙酮,乙醇,二噁烷,乙酸乙酯,甲基乙基酮,异丙醇,苯甲醚,γ
‑
丁内酯,二甲基甲酰胺,n
‑
甲基吡咯烷酮,二甲基乙酰胺,六甲基磷酰胺,甲苯,二甲基亚砜,环戊酮,四亚甲基亚砜,二甲苯,ε
‑
己内酯,四氢呋喃,四氯乙烯,氯仿,氯苯,二氯甲烷,1,2
‑
二氯乙烷,1,1,2,2
‑
四氯乙烷或它们的混合物。
[0236]
在一些实施方案中,将纳米结构组合物热固化以形成纳米结构层。在一些实施方案中,使用uv光固化组合物。在一些实施方案中,将纳米结构组合物直接涂覆在纳米结构膜的阻挡层上,然后将另外的阻挡层沉积在纳米结构层上以形成纳米结构膜。可以在阻挡膜下方使用支撑衬底,以增加强度、稳定性和涂层均匀性,并防止材料不一致、气泡形成以及阻挡层材料或其他材料的起皱或折叠。另外,一个或多个阻挡层优选沉积在纳米结构层上以密封顶部阻挡层和底部阻挡层之间的材料。适当地,可以将阻挡层沉积为层压膜并且任选地密封或进一步处理,然后将纳米结构膜并入到特定的发光设备中。如本领域普通技术人员将理解的,纳米结构组合物沉积过程可包括另外的或变化的组分。这样的实施方案将允许对纳米结构发射特性进行在线工艺调整,所述特性诸如亮度和颜色(例如,以调节量子点膜白点),以及纳米结构膜的厚度和其他特性。另外,这些实施方案将允许在生产期间对纳米结构膜特性进行定期测试,以及进行任何必要的系紧以获得精确的纳米结构膜特性。这样的测试和调整也可以在不改变加工线的机械构造的情况下完成,因为可以使用计算机程序来电子地改变用于形成纳米结构膜的混合物的各自的量。
[0237]
阻挡层
[0238]
在一些实施方案中,模制品包括布置在纳米结构层的一侧或两侧上的一个或多个阻挡层。合适的阻挡层保护纳米结构层和模制品免受诸如高温、氧气和湿气的环境条件的影响。合适的阻挡材料包括非黄变的、透明的光学材料,其是疏水的,在化学和机械上与模制品相容,显示出光和化学稳定性并可以承受高温。在一些实施方案中,一个或多个阻挡层与模制品折射率匹配。在一些实施方案中,模制制品的基质材料和一个或多个相邻的阻挡层折射率匹配以具有相似的折射率,使得穿过阻挡层朝向模制制品透射的大部分光从阻挡层透射,进入纳米结构层。这种折射率匹配减少了在阻挡层和基质材料之间的界面处的光学损失。
[0239]
阻挡层合适地是固体材料,并且可以是固化的液体、凝胶或聚合物。取决于特定的应用,阻挡层可以包括柔性或非柔性材料。阻挡层优选是平面层,并且可以取决于特定的发光应用而包括任何合适的形状和表面积构型。在一些实施方案中,一个或多个阻挡层将与层压膜处理技术兼容,由此纳米结构层被布置在至少第一阻挡层上,并且至少第二阻挡层被布置在纳米结构层上,在纳米结构层的相对的一侧上,以形成根据一个实施方案的模制品。合适的阻挡材料包括本领域已知的任何合适的阻挡材料。在一些实施方案中,合适的阻挡材料包括玻璃、聚合物和氧化物。合适的阻挡层材料包括但不限于:聚合物,诸如聚对苯二甲酸乙二醇酯(pet);氧化物,诸如氧化硅、氧化钛或氧化铝(例如,sio2、si2o3、tio2或al2o3);及其合适的组合。优选地,模制品的每个阻挡层包括至少两个包含不同材料或成分的层,使得多层阻挡消除或减少了阻挡层中的针孔缺陷对准,从而提供了对氧气和水分渗透到纳米结构中的有效阻挡。纳米结构层可以包括任何合适的材料或材料的组合以及在纳米结构层的任一侧或两侧上的任何合适数量的阻挡层。阻挡层的材料、厚度和数量将取决
于特定的应用,并且将适当地选择以最大化阻挡保护和纳米结构层的亮度,同时最小化模制品的厚度。在优选的实施方案中,每个阻挡层包括层压膜,优选双层压膜,其中每个阻挡层的厚度足够厚以消除卷对卷或层压制造过程中的起皱。在纳米结构包括重金属或其他有毒材料的实施方案中,阻挡的数量或厚度还可以取决于法律毒性指南,该指南可能需要更多或更厚的阻挡层。阻挡的另外的考虑因素包括成本、可用性和机械强度。
[0240]
在一些实施方案中,纳米结构膜包括与纳米结构层的每一侧相邻的两个或更多个阻挡层,例如,在纳米结构层的每一侧上的两个或三个层或在纳米结构层的每一侧上的两个阻挡层。在一些实施方案中,每个阻挡层包括薄玻璃板,例如具有约100μm、100μm或更小或50μm或更小的厚度的玻璃板。
[0241]
如本领域普通技术人员将理解的,模制品的每个阻挡层可具有任何合适的厚度,这将取决于发光设备和应用的特定要求和特性,以及诸如阻挡层和纳米结构层的个体膜组分。在一些实施方案中,每个阻挡层的厚度可为50μm或更小,40μm或更小,30μm或更小,25μm或更小,20μm或更小或15μm或更小。在某些实施方案中,阻挡层包括氧化物涂层,该氧化物涂层可以包括诸如氧化硅、氧化钛和氧化铝的材料(例如,sio2、si2o3、tio2、al2o3)。氧化物涂层的厚度可为约10μm或更小,5μm或更小,1μm或更小或100nm或更小。在某些实施方案中,阻挡包括厚度为约100nm或更小、10nm或更小、5nm或更小或3nm或更小的薄氧化物涂层。顶部和/或底部阻挡可以由薄氧化物涂层组成,或者可以包括薄氧化物涂层和一个或多个另外的材料层。
[0242]
纳米结构层的特征和实施方案
[0243]
在一些实施方案中,纳米结构层用于形成显示设备。如本文所使用的,显示设备是指具有发光显示器的任何系统。这样的设备包括但不限于:包含液晶显示器(lcd)的设备,电视,计算机,移动电话,智能电话,个人数字助理(pda),游戏设备,电子阅读设备,数码相机等。
[0244]
具有改进性质的模制品
[0245]
在一些实施方案中,使用纳米结构制备的模制品的eqe为:约1.5%至约20%,约1.5%至约15%,约1.5%至约12%,约1.5%至约10%,约1.5%至约8%,约1.5%至约4%,约1.5%至约3%,约3%至约20%,约3%至约15%,约3%至约12%,约3%至约10%,约3%至约8%,约8%至约20%,约8%至约15%,约8%至约12%,约8%至约10%,约10%约20%,约10%至约15%,约10%至约12%,约12%至约20%,约12%至约15%,或约15%至约20%。在一些实施方案中,纳米结构是量子点。在一些实施方案中,模制品是发光二极管。
[0246]
在一些实施方案中,使用纳米结构制备的模制品显示最大发射波长为450nm至550nm的光致发光光谱。在一些实施方案中,使用纳米结构制备的模制品显示最大发射波长为450nm至460nm的光致发光光谱。
[0247]
本文描述的产品和方法的以下实施例是说明性的而非限制性的。本领域中通常遇到的且对于本领域技术人员而言是显而易见的对本公开的各种条件、配方和其他参数的适当修改和调整落在本发明的精神和范围内。
[0248]
实施例
[0249]
实施例1
[0250]
使用topte(“旧前体”)合成znse1‑
x
te
x
合金纳米结构
[0251]
将油胺(15ml)添加到100ml三颈烧瓶中,并在80℃的真空下脱气60分钟。将混合物在氮气流下加热至300℃。在该温度下,将三辛基硒化膦(topse,2.3mmol)、三辛基碲化膦(topte,0.6mmol)和二苯膦(225μl)在三辛基膦(top,共2.9ml)中的溶液添加到烧瓶中。一旦温度回升至300℃,快速注入二乙基锌(295μl)的top(2.5ml)溶液。将温度设置为280℃,并在5分钟后开始以1ml/分钟的速率注入二乙基锌(1.38ml)和topse(20.2mmol)的top(共18ml)溶液,3.7ml后中断10分钟,9.5ml后中断15分钟。注射锌后26分钟开始以1.5ml/分钟的速度注入另外的油胺(20ml)。注入完成后,将反应混合物在280℃下保持15分钟,然后冷却至室温。然后将生长溶液用等体积的甲苯(65ml)稀释,并通过添加乙醇(130ml)来沉淀纳米晶体。离心后,弃去上清液,并将纳米晶体重新分散在己烷(40ml)中。通过从等分试样中蒸发溶剂来测量浓缩物作为干重。将干燥的材料进一步进行热重分析以确定无机物含量。
[0252]
实施例2
[0253]
使用topte(“新前体”)合成znse1‑
x
te
x
合金纳米结构
[0254]
通过首先用2.5ml干燥的和蒸馏的油胺稀释topte(1m te,230μl)来制备新的topte前体混合物。向该溶液中加入三乙基硼氢化锂(1m thf溶液,230μl),得到深紫色溶液。最后,加入油酸锌(0.5m top溶液,460μl),得到无色不透明粘稠凝胶,可将其抽入注射器中。
[0255]
将油胺(15ml)添加到100ml三颈烧瓶中,并在110℃的真空下脱气30分钟。将混合物在氮气流下加热至300℃。一旦达到该温度,将三辛基硒化膦(topse,2.7mmol)和二苯基膦(225μl)在top中的溶液(总计2.9ml)加入烧瓶中。一旦温度回升至300℃,即可从单独的注射器中快速注入上述新的topte前体制剂和二乙基锌(295μl)于top(1ml)中的溶液。将温度设置为280℃,并在5分钟后以1ml/分钟的速率开始注入二乙基锌(760μl)和topse(11.1mmol)于top(共10ml)中的溶液,在加入3.8ml后中断10分钟。在完成前体注入之后,将反应混合物在280℃下保持5分钟,然后冷却至室温。用等体积的甲苯(40ml)稀释生长溶液,并通过添加乙醇(120ml)来沉淀纳米晶体。离心后,弃去上清液,并将纳米晶体重新分散在甲苯(5ml)中。通过从等分试样蒸发掉溶剂来测量浓缩物作为干重。将干燥的材料进一步进行热重分析以确定无机物含量。
[0256]
实施例3
[0257]
znse1‑
x
te
x
/znse/zns核/壳纳米结构的合成
[0258]
使用以下程序在平均直径为4.0nm的znse1‑
x
te
x
合金纳米晶体上涂覆znse/zns多壳,目标壳厚度为4个单层(ml)的znse和4个ml的zns。
[0259]
在100ml的三颈烧瓶中加入油酸锌(6.03g)、月桂酸(3.85g)和三辛基氧化膦(4.93g)。经过三个真空和氮气回填循环后,将top(9.9ml)和znse1‑
x
te
x
核的溶液(1.5ml,78.9mg/ml甲苯溶液)添加到烧瓶中。将溶液在真空中于100℃下脱气20分钟,然后在氮气流下加热至310℃。达到此温度后10分钟,以0.19ml/min的速度开始缓慢注入topse(9.5ml,0.3mtop溶液)。在硒注入结束后,将反应在310℃下保持10分钟。然后开始以0.42ml/分钟的速度注入三丁基硫化膦(16.9ml,0.4mtop溶液)。硫注入完成后,将反应在310℃下保持10分钟,然后冷却至室温。将反应混合物用甲苯(50ml)稀释。通过添加乙醇(100ml)沉淀核/壳纳米晶体,然后通过离心、倾析上清液并将纳米晶体重新分散在己烷(50ml)中进行分离。用乙醇(50ml)重复沉淀一次,并且最终将纳米晶体重新分散在辛烷(7ml)中。通过0.22μm的聚四
氟乙烯(ptfe)注射器过滤器过滤溶液,并在测量等分试样的干重后将浓度调节至18mg/ml。
[0260]
实施例4
[0261]
使用新旧前体制备的纳米结构的元素分析
[0262]
在于硝酸中消化后,通过电感耦合等离子体发射光谱法(icp
‑
oes)分析纳米晶体样品。归一化为锌的摩尔比示于表1。
[0263]
表1
[0264][0265][0266]
所得纳米晶体中相似的碲含量表明,新的碲前体可改善碲掺入纳米晶体,因为在其他方面相同的核合成中,碲的使用量明显较低。
[0267]
实施例5
[0268]
znse1‑
x
te
x
/znse/zns量子点的性质
[0269]
znse1‑
x
te
x
/znse/zns量子点的溶液光致发光光谱示于图2中。如图2所示,两种碲前体均实现了红移。使用还原剂生成te2‑
和油酸锌作为匹配的zn
2+
前体的新配方导致峰变窄,因为促进了znte的形成。可以如表2所示通过改变壳单层的数量和所用碲的量来调节光学性能
[0270]
表2
[0271][0272]
实施例6
[0273]
使用纳米结构制备的电致发光设备的分析
[0274]
通过旋涂和热蒸发的组合来制备设备。首先,将空穴注入材料聚(3,4
‑
乙撑二氧噻吩):聚(苯乙烯磺酸盐)(pedot:pss)(50nm)旋涂到经过uv
‑
臭氧处理的铟锡氧化物(ito)衬底上,并在200℃下烘烤15分钟。将设备转移到惰性气氛中,将空穴传输材料n,n
′‑
二(萘
‑1‑
基)
‑
n,n
′‑
双(4
‑
乙烯基苯基)联苯
‑
4,4
′‑
二胺(vnpb)(20nm)通过旋涂沉积并在200℃下烘烤15分钟。通过旋涂沉积znse/zns或znse1‑
x
te
x
/znse/zns量子点的溶液,然后旋涂电子传输材料znmgo(20nm)。然后通过热蒸发沉积a1阴极(150nm),然后使用盖玻片、吸气剂和环氧树脂封装该设备。
[0275]
图3显示了与使用znse1‑
x
te
x
/znse/zns量子点制备的发光设备相比,使用纯znse/zns量子点制备的发光设备的电致发光光谱。znse1‑
x
te
x
合金核可实现450nm至460nm目标范围内的电致发光(峰值发射波长(pwl)为455.9),且半峰全宽(fwhm)低于30nm。使用znse1‑
x
te
x
/znse/zns量子点制备的发光设备获得的最大设备外量子效率(eqe)为2.0%。x=0.145和y=0.065的cie色彩空间坐标(x和y)相对接近x=0.131和y=0.046的bt.2020蓝色原色。
[0276]
现在已经完全描述了本发明,本领域普通技术人员将理解,可以在宽泛且等效的条件、制剂和其他参数范围内进行相同的发明,而不影响本发明或任何其实施方案的范围。本文引用的所有专利、专利申请和出版物均通过引用全文并入本文。