本发明涉及控制向四轮驱动车辆的左右前轮及左右后轮赋予的驱动力的驱动力控制装置。
背景技术:
在电动机动车那样的电动车辆中,左右的驱动轮由各自的电动马达或共用的电气马达来驱动。左右的驱动轮的驱动力以使它们之和成为驾驶员的要求驱动力的方式被控制成相同的值,而且根据需要通过相互独立地控制各电动马达的输出而被控制成互不相同的值。
各驱动轮通过轮胎而与路面相接,经由轮胎向路面传递驱动力,因此在各驱动轮的轮胎接地面处消耗能量。因此,通过减少在各驱动轮的轮胎接地面处消耗的能量,能够增大每一次的蓄电池充电的电动车辆的续航距离。
例如,下述的专利文献1记载了一种电动车辆,以使由左右的驱动轮的驱动力差产生的横摆力矩对于由转向角所决定的车辆的常规圆形转弯而言成为最佳的值的方式,控制左右的驱动轮的驱动力。根据专利文献1记载的电动车辆,能够降低左右的驱动轮的拐弯阻力,由此能够降低由于各驱动轮的轮胎在接地面处横向滑动而消耗的能量。
【专利文献1】日本特开2011-188561号公报
技术实现要素:
〔发明要解决的课题〕
在上述专利文献1记载的电动车辆中,没有考虑各驱动轮的轮胎 在接地面处沿前后方向滑动的情况及轮胎的横向力由于车辆加减速时的前后方向的载荷移动而变化的情况。因此,仅能降低车辆以恒定的车速转弯的情况下由于各驱动轮的轮胎在接地面处横向滑动而消耗的能量。换言之,无法降低如车辆伴随着加减速而转弯的情况那样由于各驱动轮的轮胎在接地面处沿前后方向滑动而消耗的能量。
而且,在上述专利文献1记载的电动车辆中,也未考虑使非转向轮的驱动力最佳化的情况。由此,在向左右前轮及左右后轮赋予驱动力的四轮驱动车辆中,无法如降低由于各驱动轮的轮胎在接地面处滑动而消耗的能量那样将四轮的驱动力控制为最佳。
本发明的主要课题是,在向左右前轮及左右后轮相互独立地赋予驱动力的四轮驱动车辆中,以使四轮的轮胎由于在接地面处滑动而消耗的能量的总和成为最小的方式控制四轮的驱动力。
〔用于解决课题的方案及发明的效果〕
根据本发明,提供一种驱动力控制装置,应用于四轮驱动车辆,该四轮驱动车辆具有:分别具有轮胎的左右前轮及左右后轮和相互独立地向所述四轮赋予驱动力的驱动力赋予装置,所述驱动力控制装置通过控制所述驱动力赋予装置来控制向所述四轮赋予的驱动力。
所述驱动力控制装置具有取得所述四轮的位置处的车身速度的信息的装置、取得所述四轮的接地载荷的信息的装置、取得驾驶员对所述车辆要求的要求驱动力的信息的装置,所述驱动力控制装置基于所述四轮的位置处的车身速度、所述四轮的接地载荷及所述要求驱动力,运算用于使所述四轮的轮胎滑动矢量相同的所述四轮的目标驱动力,并以使所述四轮的驱动力分别成为对应的所述目标驱动力的方式控制所述驱动力赋予装置。
在左右前轮及左右后轮的轮胎接地面处消耗的能量表示为将包括 粘着域及滑动域这两方的轮胎产生力在内的轮胎产生力矢量与滑动速度矢量的内积进行四轮量相加而得到的值。如后文详细说明那样,当四轮的轮胎滑动矢量相同时,换言之,当四轮的轮胎滑动矢量的大小及方向相同时,与轮胎滑动矢量的大小及方向无关,在四轮的轮胎接地面处消耗的能量的总和成为最小。
根据上述的结构,基于四轮的位置处的车身速度、四轮的接地载荷及要求驱动力,来运算用于使四轮的轮胎滑动矢量相同的四轮的目标驱动力。而且,以使四轮的驱动力分别成为对应的目标驱动力的方式控制驱动力赋予装置。由此,能够使四轮的轮胎滑动矢量相同,并且与轮胎滑动矢量的大小及方向无关,以使左右前轮及左右后轮的轮胎接地面处消耗的能量的总和成为最小的方式控制四轮的驱动力。
在本发明的一形态中,所述驱动力控制装置以使所述四轮的所述目标驱动力分别与“对应的车轮的接地载荷相对于该对应的车轮的位置处的车身速度之比”成比例且所述四轮的所述目标驱动力之和与所述要求驱动力一致的方式向所述四轮分配所述要求驱动力,由此来运算所述四轮的所述目标驱动力。
根据上述的结构,以使四轮的目标驱动力与四轮的接地载荷相对于四轮的位置处的车身速度之比成比例且四轮的目标驱动力之和与要求驱动力一致的方式向四轮分配驾驶员的要求驱动力,由此来运算四轮的目标驱动力。由此,如后文详细说明那样,能够运算出不仅在车辆定速直行时及常规转弯时能够使四轮的轮胎滑动矢量相同,而且在伴随着加减速的行驶时也能够使四轮的轮胎滑动矢量相同的四轮的目标驱动力。
在本发明的一形态中,将所述左右前轮及左右后轮的位置处的车身速度分别设为V1、V2、V3、V4,将所述左右前轮及左右后轮的接地载荷分别设为Fz1、Fz2、Fz3、Fz4,将所述要求驱动力设为Fx,所 述驱动力控制装置按照下述的式子
【数学式1】
来运算所述左右前轮及左右后轮的目标驱动力Fx1、Fx2、Fx3及Fx4。
根据上述的构成,左右前轮及左右后轮的目标驱动力Fx1、Fx2、Fx3及Fx4按照上述式来运算。由此,如后文详细说明那样,即使在车辆的转弯半径小且左右轮的车轮速度差大的状况下,也能够运算出用于使四轮的轮胎滑动矢量相同的四轮的目标驱动力。因此,与车辆的行驶状况无关,能够使四轮的轮胎接地面处消耗的能量的总和最小化。
另外,在本申请中,“驱动力”及“目标驱动力”并不限定于以使车辆加速的方向的值为正的正值即狭义的驱动力,也包括负值即使车辆减速的制动力。
附图说明
图1是表示应用于轮毂电动机式的四轮驱动车中的本发明的实施方式的车辆的驱动力控制装置的概略构成图。
图2是表示实施方式的车轮的驱动力的控制例程的流程图。
具体实施方式
以下,参照附图,详细说明本发明的优选实施方式。
图1是表示应用于轮毂电动机式的四轮驱动车中的本发明的实施方式的车辆的驱动力控制装置10的概略构成图。
如图1所示,驱动力控制装置10应用于具有作为转向轮的左右的前轮12FL及12FR和作为非转向轮的左右的后轮12RL及12RR的车辆14。虽然在图1中未详细图示,但是前轮12FL及12FR分别具有装配于金属制的轮子的轮胎13FL及13FR,后轮12RL及12RR分别具有装配于金属制的轮子的轮胎13RL及13RR。
前轮12FL及12FR分别通过从装入于对应的车轮的轮毂电动机16FL及16FR相互独立地赋予驱动力来驱动。同样,左右的后轮12RL及12RR分别通过从装入于对应的车轮的轮毂电动机16RL及16RR相互独立地赋予驱动力来驱动。轮毂电动机16FL~16RR在制动时分别作为再生发电机发挥功能,产生再生制动力。
轮毂电动机16FL~16RR的驱动力基于由加速器开度传感器18检测的加速踏板20的踏入量即加速器开度通过电子控制装置22的驱动力控制部来控制。轮毂电动机16FL~16RR的再生制动力通过电子控制装置22的制动力控制部经由驱动力控制部来控制。
在车辆14通常行驶时,充电于图1未示出的蓄电池的电力经由驱动电路向轮毂电动机16FL~16RR供给。在车辆14制动时,通过轮毂电动机16FL~16RR的再生制动而发电的电力经由驱动电路向蓄电池充电。
通过摩擦制动装置24相互独立地向前轮12FL、12FR及后轮12RL、12RR赋予摩擦制动力。通过由摩擦制动装置24的液压回路26控制对应的轮缸28FL、28FR、28RL、28RR的制动压来控制前轮12FL、12FR及后轮12RL、12RR的摩擦制动力。虽然图中未示出,但是液压回路26包括储蓄器、油泵、各种阀装置等。
在通常时,根据对应于驾驶员对制动踏板30的踏入而驱动的主缸32内的压力(以下称为“主缸压力”)来控制各轮缸的制动压。而且,根据需要,油泵及各种阀装置由电子控制装置22的制动力控制部控制,由此与驾驶员对制动踏板30的踏入量无关地控制各轮缸的制动压。
从以上的说明可知,轮毂电动机16FL~16RR向前轮12FL、12FR及后轮12RL、12RR赋予狭义的驱动力(正的驱动力),摩擦制动装置24向前轮12FL、12FR及后轮12RL、12RR赋予制动力(负的驱动力)。由此,轮毂电动机16FL~16RR及摩擦制动装置24相互协作而作为相互独立地向前轮12FL、12FR及后轮12RL、12RR赋予驱动力的驱动力赋予装置发挥功能。
虽然图1未示出,但是电子控制装置22除了包括驱动力控制部及制动力控制部之外,还包括对这些控制部进行控制的综合控制部。各控制部根据需要而相互进行信号的接收发送。如后文详细说明那样,综合控制部以使车辆的驱动力与驾驶员的要求驱动力一致并且四轮的接地面处的消耗能量的总和成为最小的方式,通过控制轮毂电动机16FL~16RR及摩擦制动装置24来控制四轮的驱动力。
另外,虽然图1中未详细示出,但是电子控制装置22的各控制部由微型计算机和驱动电路构成。各微型计算机具有CPU、ROM、RAM及输入输出端口装置,且具有它们通过双方向性的共用母线而相互连接的一般性的结构。
向电子控制装置22除了输入表示来自加速器开度传感器18的加速器开度的信号以外,还从压力传感器36向电子控制装置22输入表示主缸压力Pm的信号,从车轮速度传感器38FL~38RR向电子控制装置22输入表示对应的车轮的车轮速度Vwfl、Vwfr、Vwrl、Vwrr的信号。而且,从前后加速度传感器40及横向加速度传感器42向电子 控制装置22分别输入表示车辆14的前后加速度Gx及横向加速度Gy的信号,从横摆率传感器44向电子控制装置22输入表示车辆14的横摆率γ的信号。另外,横向加速度传感器42及横摆率传感器44以车辆左转弯时的值为正而分别检测横向加速度Gy及横摆率γ。
接下来,在实施方式中,说明由电子控制装置22的综合控制部执行的车轮12FL~12RR的驱动力的控制的概要。
用于对车轮进行驱动的机械的作功率不区分横向力及前后力而由轮胎产生力与滑动速度的内积表示已为人们所知。由此,在车轮12FL~12RR的轮胎接地面处消耗的能量的总和J如下述的式(1)那样,表示为将包括粘着域及滑动域这两方的轮胎产生力在内的轮胎产生力矢量Fvj与滑动速度矢量Vvj的内积进行了四轮量相加的值。另外,关于用于驱动车轮的机械的作功率由轮胎产生力与滑动速度的内积表示的情况,如果有需要的话,请参照日本公益社团法人机动车技术会学术讲演会前印刷集的“关于转弯时的驱动力分配控制和消耗能量的研究”(小林孝雄等著,2013年)。
【数学式2】
如后文详细说明那样,若四轮的轮胎滑动速度矢量Vvj相同,则与轮胎滑动矢量的大小及方向无关,能够使四轮的轮胎接地面处消耗的能量的总和J最小化。
用于使四轮的轮胎滑动速度矢量Vvj相同的四轮的驱动力Fxj(=[Fx1 Fx2 Fx3 Fx4]T)由下述的式(2)表示。下述的式(2)不仅车辆定速直行时及常规转弯时成立,而且在伴随着加减速的行驶时也成立,另外在转弯半径小且左右的车轮的车轮速度之差大的情况下也成立。 由此,将利用下述的式(2)运算的驱动力Fxj作为四轮的目标驱动力,以使四轮的驱动力分别成为对应的目标驱动力的方式进行控制,由此能够使四轮的轮胎接地面处消耗的能量的总和J最小化。
【数学式3】
另外,在上述式(2)中,Fx是驾驶员的要求驱动力,Fz1、Fz2、Fz3、Fz4分别是车轮12FL~12RR的接地载荷,V1、V2、V3、V4分别是车轮12FL~12RR的位置处的车身速度。
根据上述式(2),以使四轮的目标驱动力Fx1~Fx4分别与“对应的车轮的接地载荷Fzj相对于该对应的车轮的位置处的车身速度Vj之比”成比例且四轮的目标驱动力Fx1~Fx4之和与要求驱动力Fx一致的方式,运算四轮的目标驱动力Fx1~Fx4。
接下来,说明若四轮的轮胎滑动速度矢量Vvj相同,则上述消耗的能量的总和J最小化的情况。
四轮的轮胎接地面处的消耗能量的总和由与上述式(1)对应的下述的式(3)的评价函数J表示。车辆的前后力Fx及横向力Fy分别是四轮的前后力及横向力之和,因此下述的式(4)及(5)为限制条件。另外,sj是车轮的滑移率,αj是车轮的滑移角,下标j的数字1~4分别 表示左前轮、右前轮、左后轮及右后轮。Kxj是用于将车轮的滑移率sj转换成车轮的前后力的系数,Kyj是用于将车轮的滑移角αj转换成车轮的横向力的系数。
【数学式4】
Kx1s1+Kx2s2+Kx3s3+Kx4s4=Fx (4)
-Ky1α1-Ky2α2-Ky3α3-Ky4α4=Fy (5)
考虑使上述式(3)的评价函数J最小化的情况。为了简便起见,假定为车辆14的惯性远大于常规的行驶阻力,并忽视行驶阻力对车辆14的前后加速度造成的影响。在此,为了得到利用了Moore-Penrose的模拟逆矩阵的最小标准解,就轮胎的滑动状态而言对如下述的式(6)那样定义了的矢量qv,如下述的式(7)那样进行变量转换。
【数学式5】
qv=(s1 s2 s3 s4 α1 α2 α3 α4)T (6)
通过式(6)及(7),将上述式(4)及(5)的限制条件如下述的式(8)那样进行再定义,为了最佳化而可以将上述式(3)的评价函数J如下述的式(9)那样进行再定义。
【数学式6】
J=||pv||2 (9)
满足上述式(8)的限制条件并使上述式(9)的评价函数J为最小的矢量pv由下述的式(10)表示。
【数学式7】
在上述式(10)中,右边的系数矩阵的上标即+表示模拟逆矩阵。使上述式(9)的评价函数J为最小的矢量qv最终由下述的式(11)表示。另外,关于模拟逆矩阵,如果需要的话,请参照日本“系统控制用的矩阵理论”(计测自动控制学会编,儿玉慎三及须田信英著(2002年))的第325页~第347页。
【数学式8】
根据以上所述,上述式(6)的矢量qv由下述的式(12)表示。
【数学式9】
上述式(12)内的参数d及a分别由下述的式(13)及(14)表示。另外,Cx是用于将车轮的接地载荷Fz1、Fz2、Fz3、Fz4转换成系数Kxj的系数,Cy是用于将车轮的接地载荷Fz1、Fz2、Fz3、Fz4转换成系数Kyj的系数。
【数学式10】
根据式(12),作为最佳的轮胎滑动状态的各车轮的滑移率sj及滑移角αj由下述的式(15)表示。
【数学式11】
根据上述式(15)可知,使各车轮的轮胎滑动状态为最佳的状态的滑移率sj及滑移角αj依赖于各车轮的位置处的车身速度Vj。通过将上述式(15)的滑移率sj及滑移角αj乘以车身速度Vj,能够如下述的式(16)那样整理上述式(15)。
【数学式12】
上述式(16)的左侧的矩阵是由前后滑动速度及横向滑动速度构成的滑动速度矢量。上述式(16)的右侧的矩阵的值对于任意的车轮都成为相同的值。因此可知,为了使在四轮的轮胎的接地面处消耗的能量的总和最小化,只要使四轮的滑动速度矢量相同即可。
接下来,参照图2所示的流程图,说明实施方式中的车轮的驱动力的控制。图2所示的流程图的控制在图中未示出的点火开关接通时,每规定的时间反复执行。另外,在下述的说明中,将图2所示的流程图的车轮的驱动力的控制简称为“控制”。
首先,在步骤10中,读入表示来自加速器开度传感器18的加速 器开度的信号等。
在步骤20中,基于四轮的车轮速度Vwfl、Vwfr、Vwrl、Vwrr来运算车辆14的重心位置处的车身速度V,并进行车身速度V是否为正的判别,即进行车辆14是否为行驶中的判别。在进行了否定判别时,控制暂时结束,在进行了肯定判别时,控制进入步骤30。
在步骤30中,基于车身速度V及通过横摆率传感器44检测到的车辆14的横摆率γ等,来运算前轮12FL、12FR及后轮12RL、12RR的位置处的车身速度Vj。由此,该步骤30作为取得四轮的位置处的车身速度Vj的信息的装置发挥功能。另外,车辆14前进时的车身速度Vj的值为正。另外,关于车轮位置处的车身速度的运算,如果需要的话,请参照日本特开2002‐211378号公报及日本特开平9-86367号公报等。
在步骤40中,基于车辆14的重量W、车辆14的前后加速度Gx及横向加速度Gy等,来运算前轮12FL、12FR及后轮12RL、12RR的接地载荷Fzj。由此,该步骤40作为取得四轮的接地载荷Fzj的信息的装置发挥功能。另外,车辆14的重量W可以是预先设定的常数,也可以在车辆行驶开始时等推定。另外,关于车轮的接地载荷的运算,如果需要的话,请参照日本特开2008‐179365号公报及日本特开2006-192946号公报等。
在步骤50中,基于由加速器开度传感器18检测到的加速器开度 及由压力传感器36检测到的主缸压力Pm,来运算驾驶员的要求驱动力Fx。可以取代主缸压力Pm而使用对制动踏板30的踏力或制动踏板30的行程。由此,该步骤50作为取得驾驶员的要求驱动力Fx的信息的装置发挥功能。另外,要求驱动力Fx在驱动力时为正,在制动力时为负。
在步骤60中,基于车轮12FL~12RR的位置处的车身速度Vj、车轮12FL~12RR的接地载荷Fzj及驾驶员的要求驱动力Fx,按照与上述式(2)对应的下述的式(17)来运算车轮12FL~12RR的目标驱动力Fxj。
【数学式13】
在步骤70中,以使车轮12FL~12RR的驱动力分别成为对应的目标驱动力Fxj的方式控制轮毂电动机16FL~16RR的输出及各车轮的制动力。另外,在目标驱动力Fxj为负值且为制动力时,由轮毂电动机16FL~16RR产生的再生制动力比由摩擦制动装置24产生的摩擦制动力优先地产生,不足部分的制动力由摩擦制动力弥补。
从以上的说明可知,在步骤20中判别为车辆14为行驶中时,在步骤30~50中,分别运算四轮的位置处的车身速度Vj、四轮的接地载荷Fzj及驾驶员的要求驱动力Fx。在步骤60中,基于车身速度Vj、接地载荷Fzj及驾驶员的要求驱动力Fx,按照上述式(17)来运算四轮的目标驱动力Fxj。由此,以使四轮的目标驱动力Fxj分别与“对应的车轮的接地载荷Fzj相对于该对应的车轮的位置处的车身速度Vj之比Fzj/Vj”成比例且四轮的目标驱动力Fxj之和与要求驱动力Fx一致的方式,向四轮分配要求驱动力。而且,在步骤70中,以使四轮的驱动力分别成为对应的目标驱动力Fxj的方式进行控制。
根据上述的实施方式,四轮的目标驱动力Fxj按照与上述式(2)对应的上述式(17)来运算。由此,如上所述不仅在车辆定速直行时及常规转弯时,而且在伴随着加减速的行驶时,进而在转弯半径小且左右的车轮的车轮速度之差大的情况下,四轮的目标驱动力Fxj都是使四轮的轮胎滑动速度矢量Vvj相同的驱动力。因此,与车辆的行驶状况无关,能够使在四轮的轮胎接地面处消耗的能量的总和J最小化,由此能够增大每单位能量的车辆的续航距离。
而且,根据上述的实施方式,四轮的目标驱动力Fxj并不限定为狭义的驱动力,也可以是负的驱动力,即制动力。因此,即使向四轮赋予制动力,由此车辆被制动的状况下,也能够使四轮的轮胎接地面处消耗的能量的总和J最小化。
以上,关于特定的实施方式而详细说明了本发明,本发明并不限定为上述的实施方式,在本发明的范围内能够进行其他的各种实施方式的情况对于本领域技术人员来说不言自明。
例如,在上述的实施方式中,驾驶员的要求驱动力Fx及目标驱动力Fxj可以是狭义的驱动力,也可以是制动力,但是还可以修正为狭义的驱动力及制动力中的一方。而且,对应于此,驱动力赋予装置可以相互独立地向前轮12FL、12FR及后轮12RL、12RR赋予狭义的驱动力及制动力中的一方。
而且,在上述的实施方式中,轮毂电动机16FL~16RR相互独立地向前轮12FL、12FR及后轮12RL、12RR赋予驱动力。然而,用于向四轮赋予驱动力的电动马达等装置可以搭载于车身,向四轮赋予驱动力的装置可以由左右轮共用的驱动源和将驱动源产生的驱动力以可变的分配比向左右轮分配的装置构成。
【附图标记说明】
10…驱动力控制装置,12FL~12RR…车轮,14…车辆,16FL~16RR…轮毂电动机,18…加速器开度传感器,22…电子控制装置,24…摩擦制动装置,36…压力传感器,38FL~38RR…车轮速度传感器,40…前后加速度传感器,42…横向加速度传感器,44…横摆率传感器。