设多级限压四冲程四缸驱动轮机发电系统的增程汽车的制作方法

文档序号:12379539阅读:329来源:国知局
设多级限压四冲程四缸驱动轮机发电系统的增程汽车的制作方法与工艺

本发明涉及汽车中的具有发电系统的增程汽车,尤其涉及一种设多级限压四冲程四缸驱动轮机发电系统的增程汽车。



背景技术:

长期以来一直在用的増程器汽车发电系统,是由内燃机活塞推动曲柄,把气缸的直线运动转化为曲柄的旋转运动,曲柄旋转去驱动发电机,从而发电。其缺点是:燃料点火时,活塞转到顶点附件,曲轴在顶点附件承担气缸的最高压力,摩擦损耗很大,总效率下降很明显。

也有的把气缸与永磁直线发电机直接相连,省掉曲轴,用气缸的直线往复运动,推动永磁直线发电机的直线往复运动,这样也可发电,但有几大缺点: 1.容易造成永磁发电机的部分退磁或全部退磁,造成发电功率和发电效率的双双大幅下降,因为其永磁直线发电机太接近气缸,温度很高,很容易退磁。 2. 直线往复式运动发电机反而不是一个线性系统,因为其磁场位置和线圈不是线性关系,其阻滞力不是线性的,两端的阻滞力和中段的阻滞力是不一样的,不好控制。作为对比,旋转发电机反而更加接近线性,其阻滞力与转角的关系反而更加平稳和线性。 3直线永磁发电机由于种种原因,性能难以保证,价格也居高不下,难以大规模量产。



技术实现要素:

本发明提供了一种限压效果好的不需要曲轴和直线电机进行发电的设多级限压四冲程四缸驱动轮机发电系统的增程汽车,解决了气缸通过曲轴驱动发电机发电和气缸直接驱动直线电机进行发电所存在的不足。

以上技术问题是通过下列技术方案解决的:一种设多级限压四冲程四缸驱动轮机发电系统的增程汽车,包括车轮和通过减振器支撑在车轮上的车架,所述车架上设有驱动车轮行走的电动机、给电动机供电的蓄电池、给蓄电池充电的发电机和驱动发电机的发动机气缸,其特征在于,还包括轮机系统,所述发动机气缸有四个且为四冲程气缸,四个所述发动机气缸的缸体通过气缸架连接在一起,所述气缸架设有滑槽和连接在滑槽内的滑轮,所述四个发动机气缸中的两个发动机气缸的活塞在做功冲程驱动所述滑轮向一侧滑动、另外两个发动机气缸的活塞在做功冲程驱动所述滑轮向另一侧滑动,所述轮机系统包括驱动所述发电机发电的水轮机和驱动水轮机旋转的循环液流机构,所述循环液流机构包括液压活塞和稳定流向水轮机的液流压力的多级限压机构,所述液压活塞同所述滑轮连接在一起。使用时通过四个发动机气缸的活塞的直线往复运动驱动滑轮在滑槽内做直线往复运动,滑轮驱动液压活塞做往复运动而使得循环液流机构内的液体产生循环运动而驱动水轮机旋转,水轮机旋转驱动发动机的转子旋转从而实现发电而对蓄电池充电进行增程。流体轮机由于不是热机,不受卡诺极限的限制,且管道中的流体轮机也不受贝兹极限的限制,由于避免了在曲轴顶点发力的难题,其流体动能到旋转机械能的转换效率极高,轻易达92%,甚至达98%。现代的水电站,其流体动能-旋转动能的转换效率,基本上都是百分之九十几。也即,曲轴造成的效率损耗,在流体轮机上基本不存在。从而客服了曲轴驱动的不足。由于本技术方案不需要采用直线发电机,所以能够克服直线发电机的不足。设计多级限压机构能够使得流经水轮机的水压的稳定性好。

作为优选,所述减振器包括上段和上端套设在上段下端的下段,下段内设有支撑所述上段的减震弹簧,所述上段的上端设有连接环,所述连接环内穿设有内环,所述内环通过橡胶环同所述连接环连接在一起,所述内环穿设有连接于所述容器的连接销。内环和连接环是通过橡胶环连接的,连接环不容易产生变形,变形多产生于内环,所以变形后只需要更换内环即可。

作为优选,所述橡胶环设有若干个沿橡胶环周向分布的盲孔,所述盲孔设置于所述橡胶环的内周面或外周面,所述盲孔中设有隔离板,所述隔离板将所述盲孔分割成沿橡胶环的径向分布的两个腔体,所述隔离板设有连通所述两个腔体的主摩擦通道,所述主摩擦通道内设有摩擦板,所述摩擦板穿设有可沿橡胶环径向滑动的摩擦杆,所述摩擦杆设有支摩擦通道,所述盲孔的开口端盖有朝向盲孔内部拱起的弹性盖。能够进一步提高隔震效果。本技术方案的隔震过程为:将液体填充在盲孔内,当受到震动时,内环和连接环之间会产生往复的径向位移,该位移会导致盲孔变形时,盲孔变形而驱动位于其内的液体在内腔体和外腔体之间来回流动、摩擦板和摩擦杆的晃动,液体流动以及摩擦板和摩擦杆晃动过程中将震动能量转变为热能而消耗掉。如果震动较小而不足以促使盲孔变形时,此时只有液体的晃动,液体晃动时摩擦杆产生晃动而吸能,设置摩擦杆能够提高对高频低幅震动的吸收作用,使得本发明不但能够吸收隔离高震幅的震动能量、还能吸收低震幅的震动能量,因此隔震效果更加好。该结构能够使得一侧的盲孔受到挤压时另一侧的盲孔则产生舒张、而不是同时受压或舒张,使得在震动的正负震幅区间时都能够有效吸震,吸震效率高。

作为优先,所述循环液流机构还包括外储液箱、升压箱和位于外储液箱内的内储液箱,所述内储液箱内设有缸体段,所述液压活塞同所述缸体段密封滑动连接在一起,所述液压活塞将所述内储液箱分隔为两个液压腔,所述液压腔通过朝向液压腔内开启的第一单向阀同所述外储液箱连通,所述液压腔通过朝向升压箱内开启的第二单向阀同所述升压箱连通,所述多级限压机构设置在所述升压箱上,所述升压箱设有同所述外储液箱连通的回流通道,所述水轮机设置在所述回流通道内。

作为优选,所述缸体段设有同液压活塞配合的内表面层,所述内表面层同温差发电管的高温端连接在一起。能够对缸体段进行降温、避免液压活塞连续运动导致温升过高而损坏。同时该产生的热量能够转化为电能进行利用。

作为优选,所述发电机连接在所述外储液箱的外部,所述发电机的转轴伸入所述外储液箱内后同所述水轮机的转轴连接在一起,所述外储液箱内密封连接有弹性密封套设在所述发电机的转轴上的锥形密封套。进行密封装配时方便。由于密封套为弹性结构,产生磨损后能够在弹力的作用下进行补偿,故不容易产生密封不良现象。

作为优选,所述发电机、锥形密封套和外储液箱的箱壁之间形成密封腔,所述密封腔设有同弹性气囊连接在一起的气道。安装时先使气囊压扁,然后进行装配,装配好后松开气囊,气囊产生吸气作用从而使得密封腔内产生负压,从而起到提高密封效果的作用。

作为优选,所述多级限压机构包括至少两个限压储能缸,所述限压储能缸包括设有进液口的储能缸缸体、位于储能缸缸体内的储能缸活塞和驱动活塞朝向进液口移动的储能弹簧,所述储能缸缸体的侧壁上还设有泄流口,所述储能缸活塞设有朝向进液口所在侧开启的第三单向阀,所有的限压储能缸通过一个限压储能缸的进液口同另一个限压储能缸的泄压口连接在一起的方式串联连接在一起,第一个限压储能缸的进液口同升压箱连通。当升压箱内的压力升高时,驱动第一个限压储能缸内的储能弹簧压缩储能且实现限压,当压力上升到第一个限压储能缸的进液口同液流口连通时,液体经液流口流向第二个限压储能缸的进液口,第二个限压储能缸进行同上述第一个限压储能缸的储能限压过程,以此类推,直到压力稳定在只能够使第一个限压储能缸的储能缸活塞同液流口对齐的位置。当压力下降时则各级限压储能缸中的弹簧释放能量且使限压储能缸缸体内的液体回流到升压箱内。本技术方案限压效果好,且进行限压时能够进能量进行储存使得在压力降低时进行释放而维持压力稳定。

作为优先,所述泄压口设有一个出口端、至少两个沿储能缸缸体深度方向分布的进口端和将所有的进口端同出口端连通沿储能缸缸体深度方向延伸的圆柱形连通段,所述连通段内可转动地密封连接有同所述出口端连通的调压管,所述调压管同每一个所述进口端等高的部位都设有连通孔,所述连通孔沿所述调压管的周向错开。能够通过使不同的液流口同连通孔对齐来调整所需要限压的压力大小。

作为优选,所述发电机通过螺栓配合螺母同所述轮机系统连接在一起,所述螺母包括环形螺母本体和设置在螺母本体内周面上的内螺纹,所述螺母本体的内周面上设有沿螺母的一端延伸至另一端的通槽,所述通槽将所述内螺纹沿螺母本体的周向断开,所述螺母本体设有穿过所述通槽的一侧侧壁后螺纹连接在通槽的另一侧侧壁上的通槽槽宽调节螺钉。在螺母锁紧后锁紧通槽槽宽调节螺钉而使得通槽宽度缩小,缩小的结果为使得内螺纹的更紧地抱紧在螺栓上,从而使得螺母和螺栓之间不容易产生松动而导致发电机连接松动。

作为优选,所述通槽有两条。锁紧效果要且度螺纹的破坏效果小。

作为优选,所述两条通槽沿螺母本体的周向均匀分布。能够有效防止螺母产生局部脆弱现象。

作为优选,螺母本体的外周面上设有助力槽。驱动螺母转动时方便。

本发明具有下述优点:实现了将气缸的机械运动能量转为为电能;实现了无曲轴对旋转发电机的驱动而实现发电;循环液流机构的压力稳定性好。

附图说明

图1为本发明的结构示意图。

图2为减震器的结构示意图。

图3为图2中的连接环的剖视放大示意图。

图4为图3的C处的局部放大示意图。

图5为图4的D处的局部放大示意图。

图6为图1中的螺母的轴向放大示意图。

图7为多级限压机构的放大的示意图。

图8为限压储能缸的放大示意图。

图9为图1的C处的局部放大示意图。

图中:发动机气缸1、发动机气缸的缸体11、发动机气缸的活塞12、发电机2、发电机的转轴21、轮机系统3、循环液流机构31、外储液箱311、气道3111、螺栓3112、补液腔3113、升压箱312、回流通道3121、内储液箱313、缸体段3131、液压活塞3132、内表面层3133、液压腔3134、温差发电管314、连杆315、第一单向阀316、第二单向阀317、密封套318、密封腔319、气囊310、水轮机32、气缸架5、滑槽52、滑轮53、螺母8、多级限压机构9、第一个限压储能缸91-1、第二个限压储能缸91-2、进液口911、储能缸缸体912、储能缸活塞913、储能弹簧914、泄流口915、出口端9151、进口端9152、连通段9153、调压管916、连通孔9161、第三单向阀917。

具体实施方式

下面结合附图与实施例对本发明作进一步的说明。

参见图1,一种设多级限压四冲程四缸驱动轮机发电系统的增程汽车,包括车轮13和通过减振器6支撑在车轮上的车架14。车架14上设有驱动车轮行走的电动机15、给电动机供电的蓄电池16、给蓄电池充电的发电机2、驱动发电机的发动机气缸1和轮机系统3。

发动机气缸1有四个且为四冲程气缸。四个发动机气缸1通过气缸架5连接在一起。气缸架5设有滑槽52和连接在滑槽内的滑轮53。四个发动机气缸1中的两个发动机气缸的活塞12在做功冲程驱动滑轮53向左侧滑动、另外两个气缸的活塞在做功冲程驱动滑轮53向右侧滑动,具体为:四个发动机气缸在做功、排气、进气、压缩四个冲程,四个发动机气缸1之间位项相差90度,工作状态在四缸之间循环轮转,从而推动滑轮53沿滑槽52做直线往复运动。

轮机系统3包括循环液流机构31和水轮机32。循环液流机构31包括外储液箱311、升压箱312和位于外储液箱内的内储液箱313和多级限压机构9。升压箱312和内储液箱313都位于外储液箱311内。内储液箱313内设有缸体段3131。缸体段3131设有同液压活塞3132密封滑动连接在一起的内表面层3133。内表面层3133同温差发电管314的高温端连接在一起。温差发电管314的电源输出端通过充电器给蓄电池16充电。液压活塞3132通过连杆315同滑轮53连接在一起。液压活塞3132将内储液箱313分隔为两个液压腔3134。液压腔3134通过朝向液压腔内开启的第一单向阀316同外储液箱311连通。液压腔3134通过朝向升压箱内开启的第二单向阀317同升压箱312连通。多级限压机构9设置在升压箱312上。升压箱312设有同外储液箱311连通的回流通道3121。水轮机32设置在回流通道3121内。发电机2通过螺栓3112配合螺母8固定在外储液箱31的外部。发电机的转轴21伸进外储液箱311后同水轮机的转轴321连接在一起,具体为花键连接。外出液箱311同补液腔3113连通。

多级限压机构9包括至少两个限压储能缸9本实施例中为两个限压储能缸,两个限压储能缸为第一个限压储能缸91-1和第二个限压储能缸91-2。限压储能缸包括设有进液口911的储能缸缸体912、位于储能缸缸体内的储能缸活塞913和驱动活塞朝向进液口移动的储能弹簧914。第一个限压储能缸91-1的进液口同升压箱312连通。

参见图2,减振器6包括下段61和上段62。下段61的下端同车轮13(参见图1)连接在一起。下段61的上端可滑动地套设在上段62的下端上。下段61内设有支撑住上段62的减震弹簧63。上段62的上端设有连接环621。连接环621内穿设有内环622。内环622通过橡胶环7同连接环621连接在一起。内环622穿设有连接销623。连接销623同车架14(参见图1)连接在一起。

参见图3,橡胶环7的内周面设有若干个沿橡胶环的周向分布的盲孔71(盲孔设置在橡胶环的外周面也是可以的)。盲孔71内设有隔离板72。隔离板72将盲孔71分割成两个腔体即内腔体711和外腔体712。盲孔71的开口端盖有弹性盖73。弹性盖73为朝向盲孔71内部拱起的碗形。

参见图4,隔离板72设有若干条主摩擦通道75。主摩擦通道75连通内腔体711和外腔体712。主摩擦通道75内设有摩擦板76。

参见图5,摩擦板76中穿设有若干可沿内腔体和外腔体的分布方向即图中上下方向滑动的摩擦杆77。摩擦杆77为圆柱形。摩擦杆77设有支摩擦通道78。支摩擦通道78连通摩擦板76上下方的空间(即连通内外腔体)。摩擦杆77的两个轴向端面771都为球面。

参见图6,螺母8包括环形螺母本体81和设置在螺母本体内周面上的内螺纹82。螺母本体81的内周面上设有两条通槽83。通槽83从沿螺母8的轴向一端延伸至另一端。通槽83将内螺纹82沿螺母本体81的周向断开。螺母本体81设有穿过通槽的一侧侧壁831后螺纹连接在通槽的另一侧侧壁832上的通槽槽宽调节螺钉84。两条通槽83沿螺母本体81的周向均匀分布。螺母本体81的外周面上设有助力槽85。

参见图7,储能缸缸体912的侧壁上还设有泄流口915。泄压口泄流口915设有出口端9151、进口端9152和圆柱形连通段9153。进口端9152有6个。6个进口端9152沿储能缸缸体912深度方向分布。连通段9153为沿储能缸缸体912深度方向延伸的圆柱形。连通段9153将所有的进口端9152同出口端9151连通。连通段9153内可转动地密封连接有同出口端9151连通的调压管916。储能缸活塞913设有朝向进液口侧开启的第三单向阀917。第二个限压储能缸91-2的进液口同第一个限压储能缸91-1的泄压口的出口端9151连接在一起而实现串联连接在一起。

参见图8,调压管916设有6个同每一个所述进口端等高的部位都设有连通孔9161。6个连通孔9161同6个进口端9152一一对应地等高。6个连通孔9161沿调压管916的周向错开。

参见图1、图7和图8,进行限压的过程为,首先进行压力设定,具体设定过程为:根据需要限压到的压力(即压强)要求,转到调压管916到同所需要的压力对应的进口端9152等高的连通孔9161同该进口端9152对齐,使得该进口端9152同出口端9151连通(没有同连通孔9161对齐的进口端9152则不被调压管916封堵住)。压力=弹簧同对应进口端9152对齐时的弹力除以限压缸活塞的面积。

限压的过程为:当升压箱312内的压力升高时,驱动第一个限压储能缸内的储能弹簧压缩储能且实现限压,当压力上升到第一个限压储能缸的储能缸活塞移同出口端连通的进口端同进液口连通时,液体经液流口流向第二个限压储能缸的进口端,第二个限压储能缸进行同第一个限压储能缸的储能限压过程,以此类推,直到压力稳定在只能够使第一个限压储能缸的储能缸活塞同可以溢流的液流口进口端对齐的位置,从而实现限压。当压力下降时则各级限压储能缸中的弹簧释放能量且使限压储能缸缸体内的液体回流到升压箱内。

参见图9,外储液箱311内密封连接有锥形密封套318。密封套318位弹性橡胶套。密封套318弹性密封套设在发电机的转轴21上。发电机2、锥形密封套318和外储液箱311的箱壁之间形成密封腔319。密封腔319设有同弹性气囊310连接在一起的气道3111。

通过密封套318对发电机的转轴进行密封的过程为。装配过程中按压住气囊310使气囊容积缩小,然后将发电机的转轴伸入密封套318同水轮机的转轴321连接在一起,使得密封套318密封套设在发电机的转轴上,且使形成密封腔319,然后松开气囊310,气囊在自身弹力的作用下撑开,撑开结果为在密封腔内产生负压,从而使得密封套318更加可靠地密封在发电机的转轴上。

参见图1,本发明发电的过程为,四个发动机气缸驱动滑轮做左右方向的往复直线运动,滑轮驱动液压活塞做左右方向的往复直线运动,活塞做直线往复运动时驱动液体以外储液箱→内储液箱→升压箱→外储液箱之间进行单向循环,从而驱动水轮机32旋转,水轮机驱动发电机发电。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1