用于确定发动机启转阈值的系统和方法与流程

文档序号:13435828阅读:451来源:国知局
用于确定发动机启转阈值的系统和方法与流程

本公开涉及混合动力车辆动力传动系控制系统。更具体地,本公开涉及发动机启转控制。



背景技术:

混合动力车辆包括发动机和与电池关联的作为马达/发电机运转的电机,以提供仅使用电力来推进车辆的电动车辆(ev)模式或使用发动机和电机来推进车辆的混合动力电动车辆(hev)模式。一些混合动力车辆动力传动系构造包括被配置为在以ev模式运行时使发动机与电机和传动装置选择性地分离的分离离合器。

在以ev模式运行时,混合动力车辆可使用起动机马达来起动发动机(发动机启转)。可选地,发动机可通过使分离离合器接合(闭合)并通过将电机用于启动发动机来启动。在分离离合器接合期间,变矩器旁通离合器可被断开,以使传动系与扭矩扰动隔离开。使变矩器旁通离合器断开或打滑起到低通滤波器的作用并抑制扭矩扰动传递通过传动系。

发动机启转请求取决于多个考虑因素,诸如,踩下/松开加速器、总的驾驶员功率需求和最大可用马达扭矩。许多发动机启转策略仅考虑在当前或目前泵轮转速下的最大可用马达扭矩而不考虑由于马达转速的增大(马达转速的增大是在发动机启动期间使变矩器旁通离合器断开的结果)导致的最大可用马达扭矩的变化。如果发动机启动/发动机启转阈值不考虑可用马达扭矩的这个动态变化,那么在发动机启动期间变矩器旁通离合器的断开或打滑可能会产生扭矩洞(torquehole)。



技术实现要素:

根据本公开的一个实施例,公开了一种用于基于最大马达扭矩而修改混合动力车辆内的发动机启转(enginepull-up,epu)逻辑的控制算法。具体地,所述控制算法考虑了归因于变矩器旁通离合器在发动机启动期间的断开/打滑的最大可用马达扭矩的下降或变化。

在一个实施例中,公开了一种具有动力传动系的车辆,所述动力传动系包括发动机、具有旁通离合器的变矩器以及被配置为选择性地结合到所述发动机的马达。所述车辆可包括控制器,所述控制器被配置为:响应于所述变矩器的旁通离合器锁止和马达扭矩超过发动机启转阈值而重启所述发动机。所述发动机启转阈值可基于由所述变矩器的虚拟泵轮转速确定的最大可用马达扭矩。所述虚拟泵轮转速还可由发动机启动期间的变矩器的旁通离合器两侧的期望的滑差和涡轮转速来确定。变矩器的旁通离合器两侧的期望的滑差可由驾驶员扭矩需求和车辆速度来确定。所述发动机启转阈值还可基于最大可用马达扭矩减去在发动机启动期间使变矩器的涡轮扭矩保持恒定所需的液压扭矩的变化。

在另一实施例中,公开了一种用于车辆的发动机启转系统,所述车辆具有选择性地结合到马达的发动机。所述发动机启转系统可包括控制器,所述控制器被配置为:响应于所述变矩器的旁通离合器锁止和所述马达扭矩超过发动机启转阈值而重启所述发动机。所述发动机启转阈值可基于由所述变矩器的虚拟泵轮转速确定的最大可用马达扭矩,并且所述虚拟泵轮转速可由在所述变矩器的旁通离合器完全断开的情况下针对涡轮转速和涡轮扭矩将产生的转速来确定。所述发动机启转阈值还可由虚拟液压扭矩来确定,所述虚拟液压扭矩与在所述变矩器的旁通离合器完全断开的情况下针对涡轮转速和涡轮扭矩将产生的扭矩相关联。所述控制器还可被配置为响应于所述变矩器的旁通离合器断开和所述马达扭矩超过相应的阈值而重启所述发动机,其中,所述相应的阈值基于由马达转速确定的最大可用马达扭矩。

根据本发明的一个实施例,所述虚拟泵轮转速还可基于与在变矩器锁止状态和变矩器断开状态之间使变矩器的涡轮扭矩保持恒定所需的液压扭矩值相关联的涡轮转速。

在又一实施例中,公开了一种用于控制车辆的方法,所述车辆具有选择性地结合到发动机的马达。所述方法可包括:响应于变矩器的旁通离合器锁止和马达扭矩超过与发动机启转阈值而控制发动机启转,所述发动机启转阈值与由所述变矩器的虚拟泵轮转速确定的最大可用马达扭矩相关联。所述方法还可包括响应于所述马达扭矩在所述发动机启转阈值以下而在所述发动机关闭的情况下保持所述车辆的运行。所述发动机启转阈值还可基于最大可用马达扭矩减去在发动机启动期间使变矩器的涡轮扭矩保持恒定所需的液压扭矩的变化。所述液压扭矩的变化可由变矩器两侧的虚拟扭矩比来确定。

根据本发明的一个实施例,所述虚拟泵轮转速可由发动机启动期间的变矩器的旁通离合器两侧的期望的滑差和涡轮转速来确定,变矩器的旁通离合器两侧的期望的滑差可基于驾驶员扭矩需求和车辆速度。

根据本发明的一个实施例,所述虚拟泵轮转速可由在所述变矩器的旁通离合器完全断开的情况下针对涡轮转速和涡轮扭矩将产生的转速来确定。

根据本发明的一个实施例,所述发动机启转阈值还可基于与所述马达相关联的惯量和由所述变矩器的虚拟泵轮转速和实际泵轮转速确定的期望的马达加速度。

各个实施例可提供一个或更多个优点。例如,根据各个实施例的混合动力车辆中的发动机启转控制基于发动机启转阈值而提供了鲁棒且高效的发动机启动,其中,发动机启转阈值由在虚拟泵轮转速下的最大可用扭矩来确定,发动机启转阈值在泵轮转速随着变矩器旁通离合器的断开/打滑而变化时考虑最大可用扭矩的变化。一个或更多个实施例提供动态计算的扭矩,以填充由变矩器旁通离合器的松开所产生的扭矩洞,从而提供传动系与发动机启动扰动的隔离,这可提升整体车辆性能和效率。

基于描述和示出的代表性实施例,本领域普通技术人员可认识到要求保护的主题的各个实施例的上述的优点和其他优点以及特征。

附图说明

图1是根据本公开的一个或更多个实施例的混合动力车辆的示意图;

图2是根据本公开的一个或更多个实施例的根据马达/泵轮转速的马达扭矩限制的曲线图;

图3是示出根据本公开的各个实施例的在发动机启动期间变矩器旁通离合器被命令为打滑时用于发动机启转控制的方法的流程图;

图4是示出根据本公开的各个实施例的在发动机启动期间变矩器旁通离合器被命令为完全断开时用于发动机启转控制的方法的流程图。

具体实施方式

在此描述本公开的实施例。然而,应当理解的是,所公开的实施例仅为示例,其它实施例可采取多种替代形式。附图不一定按比例绘制;可夸大或最小化一些特征以示出特定组件的细节。因此,此处所公开的具体结构和功能细节不应被解释为限制,而仅仅作为用于教导本领域技术人员以多种形式利用实施例的代表性基础。如本领域普通技术人员将理解的,参照任一附图示出和描述的各个特征可与一个或更多个其它附图中示出的特征组合以产生未明确示出或描述的实施例。示出的特征的组合提供用于典型应用的代表性实施例。然而,与本公开的教导一致的特征的各种组合和变型可被期望用于特定的应用或实施方式。

参照图1,示出了根据本公开的实施例的混合动力电动车辆(hev)10的示意图。图1示出了部件之间的代表性的关系。部件在车辆内的实体布局和定向可变化。hev10包括动力传动系12。动力传动系12包括驱动传动装置16的发动机14,所述传动装置16可被称作模块化混合动力传动装置(mht)。如下面将进一步详细地描述的,传动装置16包括诸如电动马达/发电机(m/g)18的电机、相关联的牵引电池20、变矩器22以及多阶梯传动比(step-ratio)自动变速器或齿轮箱24。发动机14、m/g18、变矩器22以及自动变速器24有序地串联连接,如图1所示。

发动机14和m/g18两者是用于hev10的驱动源。发动机14通常代表可包括内燃发动机(例如,以汽油、柴油或天然气为动力的发动机)或者燃料电池的动力源。发动机14产生发动机功率和相应的发动机扭矩,当位于发动机14和m/g18之间的分离离合器26至少部分地接合时,所述发动机扭矩被提供到m/g18。m/g18可通过多种类型的电机中的任意一种来实施。例如,m/g18可以是永磁同步马达。如将在下文所描述的,电力电子器件(powerelectronics)将由电池20提供的直流(dc)调节至符合m/g18的要求。例如,电力电子器件可将三相交流(ac)电提供至m/g18。

当分离离合器26至少部分地接合时,从发动机14到m/g18或者从m/g18到发动机14的动力流是可能的。例如,分离离合器26可被接合并且m/g18可作为发电机运转,以将曲轴28和m/g轴30提供的旋转能量转化为电能而储存在电池20中。分离离合器26还可被分离,以使发动机14与动力传动系12的其余部分隔离从而m/g18能够充当hev10的唯一驱动源。轴30延伸通过m/g18。m/g18连续可驱动地连接到轴30,而仅当分离离合器26至少部分地接合时发动机14才可驱动地连接到轴30。

单独的起动机马达(s)31可与发动机14选择性地接合,以使发动机旋转,从而使燃烧开始。一旦发动机被启动,起动机马达31便可经由(例如)位于起动机马达31和发动机14之间的离合器(未示出)而与发动机分离。在一个实施例中,在分离离合器26断开时,发动机14通过起动机马达31起动,以保持发动机与m/g18分离。一旦发动机已经启动并达到与m/g18一致的转速,分离离合器26便可将发动机结合到m/g,以允许发动机提供驱动扭矩。

在另一实施例中,未设置起动机马达31,而替代地,发动机14通过m/g18启动。为了完成启动,分离离合器26部分地接合,以将来自m/g18的扭矩传递到发动机14。可要求m/g18增加扭矩,以在启动发动机14的同时还满足驾驶员需求。然后,一旦发动机转速达到m/g的转速时,分离离合器26便可完全地接合。

m/g18经由轴30连接到变矩器22。因此,当分离离合器26至少部分地接合时,变矩器22连接到发动机14。变矩器22包括被固定到m/g轴30的泵轮和被固定到变速器输入轴32的涡轮。因而,变矩器22在轴30和变速器输入轴32之间提供液力耦合。当泵轮比涡轮旋转得更快时,变矩器22将来自泵轮的动力传递到涡轮。涡轮扭矩和泵轮扭矩的大小通常取决于相对转速。当泵轮转速与涡轮转速之比足够高时,涡轮扭矩是泵轮扭矩的倍数。还可设置变矩器旁通离合器34,所述变矩器旁通离合器34在接合时摩擦地或者机械地连接变矩器22的泵轮和涡轮,以允许更高效的动力传递。变矩器旁通离合器34可作为起步离合器运转以提供平稳的车辆起步。可选地或者以组合的方式,对于不包括变矩器22或者变矩器旁通离合器34的应用而言,类似于分离离合器26的起步离合器可被设置在m/g18和齿轮箱24之间。在一些应用中,分离离合器26通常被称作上游离合器,而起步离合器34(可以是变矩器旁通离合器)通常被称作下游离合器。

齿轮箱24可包括齿轮组(未示出),该齿轮组通过诸如离合器和制动器(未示出)的摩擦元件的选择性的接合而被选择性地设置在不同的齿轮比,以建立期望的多个离散或阶梯传动比。摩擦元件是通过换挡计划可控制的,该换挡计划使齿轮组的某些元件连接和分离,以控制变速器输出轴36与变速器输入轴32之间的传动比。通过诸如动力传动系控制单元(pcu)的相关联的控制器,基于各种车辆工况以及环境工况,齿轮箱24从一个传动比自动地切换到另一个传动比。然后,齿轮箱24将动力传动系的输出扭矩提供到输出轴36。

应理解的是,与变矩器22一起使用的液压控制的齿轮箱24仅为齿轮箱或变速器布置的一个示例;从发动机和/或马达接收输入扭矩然后以不同的传动比将扭矩提供到输出轴的任意多传动比齿轮箱是可被接受用于本公开的实施例的。例如,齿轮箱24可通过机械式(或手动式)自动变速器(amt)来实施,所述amt包括一个或更多个伺服马达,以使换挡拨叉沿换挡拨叉导轨平移/旋转从而选择期望的齿轮比。如本领域普通技术人员通常所理解的,amt可被用于(例如)具有较高扭矩需求的应用中。

如图1的代表性实施例中所示出的,输出轴36连接到差速器40。差速器40经由连接到差速器40的各个车轴44驱动一对车轮42。差速器将大致相等的扭矩传递至每个车轮42,同时允许轻微的转速差异(例如,当车辆转弯时)。不同类型的差速器或者类似的装置可被用于将来自动力传动系的扭矩分配到一个或更多个车轮。在一些应用中,扭矩分配例如可根据特定的工作模式或状况而变化。

动力传动系12还包括相关联的控制器50,诸如,动力传动系控制单元(pcu)。虽然被示出为一个控制器,但是控制器50可以是更大的控制系统的一部分并且可通过遍布车辆10的各种其他的控制器(例如,车辆系统控制器(vsc))进行控制。因此,应理解的是,动力传动系控制单元50和一个或更多个其他的控制器可被统称为“控制器”,所述“控制器”响应于来自各种传感器的信号而控制各种致动器从而控制诸如发动机启转请求、启动/停止、操作m/g18以提供车轮扭矩或者给电池20充电、选择或者计划变速器换挡等功能。控制器50可包括与各种类型的计算机可读存储装置或介质通信的微处理器或者中央处理器(cpu)。计算机可读存储装置或介质可包括(例如)只读存储器(rom)、随机存取存储器(ram)和保活存储器(kam)中的易失性和非易失性存储。kam是可被用于在cpu掉电时存储各种操作变量的持久性或非易失性存储器。计算机可读存储装置或介质可通过使用许多的已知的存储装置中的任意存储装置来实施,例如,可编程只读存储器(prom)、电可编程只读存储器(eprom)、电可擦除可编程只读存储器(eeprom)、闪速存储器或能够存储数据(其中一些数据代表被控制器用于控制发动机或者车辆的可执行指令)的任何其他电、磁、光学或组合式存储装置。

控制器经由输入/输出(i/o)接口与各种发动机/车辆传感器和致动器通信,该i/o接口可被实施为提供各种原始数据或信号的调节、处理和/或转换、短路保护等的单个集成接口。可选地,在特定的信号被提供到cpu之前,一个或更多个专用的硬件或者固件芯片可被用于调节和处理所述特定的信号。如图1的代表性实施例中整体上所示出的,控制器50可将信号传输到发动机14、分离离合器26、m/g18、起步离合器34、传动装置齿轮箱24和电力电子器件56,并且/或者可传输来自发动机14、分离离合器26、m/g18、起步离合器34、传动装置齿轮箱24和电力电子器件56的信号。虽然未明确地示出,但是本领域普通技术人员将认识到上文所指出的每个子系统内的可通过控制器50控制的各种功能或组件。可利用由控制器执行的控制逻辑直接或间接致动的参数、系统和/或组件的代表性的示例包括燃料喷射正时、速率和持续时间、节气门位置、火花塞点火正时(用于火花点火发动机)、进/排气门正时和持续时间、前端附件驱动(fead)组件(例如,交流发电机、空调压缩机)、电池充电、再生制动、m/g运转、用于分离离合器26、起步离合器34以及传动装置齿轮箱24的离合器压力等。经由i/o接口传输输入的传感器可被用于指示(例如)涡轮增压器增压压力、曲轴位置(pip)、发动机旋转速度(rpm)、车轮转速(ws1、ws2)、车辆速度(vss)、冷却剂温度(ect)、进气歧管压力(map)、加速踏板位置(apps)、点火开关位置(ign)、节气门位置(tp)、空气温度(tmp)、排气氧(ego)或其他排气组分浓度或存在情况、进气流量(maf)、变速器挡位、传动比或模式、变速器油温(tot)、传动装置涡轮转速(ts)、变矩器旁通离合器34状态(tcc)、减速或换挡模式(mde)。

由控制器50所执行的控制逻辑或功能可在一个或更多个附图中通过流程图或者类似的图表来表示。这些附图提供代表性的控制策略和/或逻辑,该控制策略和/或逻辑可采用诸如事件驱动、中断驱动、多任务、多线程等的一个或更多个处理策略来实施。因此,所示的各种步骤或者功能可以以所示的顺序执行、以并行的方式执行或者在某些情况下可被省略。虽然未总是明确地示出,但是本领域普通技术人员将认识到一个或更多个所示的步骤或功能可根据正在采用的特定的处理策略而被重复地执行。类似地,处理的顺序对于实现在此描述的特点和优点不一定是必需的,而是为了便于说明和描述而提供。控制逻辑可主要在通过基于微处理器的车辆、发动机和/或动力传动系控制器(诸如控制器50)执行的软件中实施。当然,根据特定的应用,控制逻辑可在一个或更多个控制器中的软件、硬件或软件和硬件的组合中实施。当在软件中实施时,控制逻辑可被设置在一个或更多个计算机可读存储装置或介质中,该存储装置或介质具有代表编码或者指令的存储数据,该编码或者指令通过计算机来执行以控制车辆或其子系统。计算机可读存储装置或介质可包括利用电、磁和/或光学存储来保持可执行的指令和相关联的校准信息、操作变量等的多个已知的物理装置中的一个或更多个。

车辆的驾驶者使用加速踏板52来提供推进车辆所需的扭矩、功率或驱动命令。通常,踩下和松开加速踏板52产生可被控制器50解释为分别用于增加动力或者减少动力的需求的加速踏板位置信号。至少基于来自该踏板的输入,控制器50命令来自发动机14和/或m/g18的扭矩。控制器50还控制齿轮箱24内的换挡正时以及分离离合器26和变矩器旁通离合器34的接合或分离。类似于分离离合器26,变矩器旁通离合器34可在接合位置和分离位置之间的整个范围内进行调节。除由泵轮和涡轮之间的液力耦合产生的可变的打滑之外,这也在变矩器22中产生可变的打滑。可选地,根据特定的应用,可使变矩器旁通离合器34以锁止或断开模式进行操作而不使用调节的操作模式。

为了使用发动机14来驱动车辆,分离离合器26至少部分地接合,以通过分离离合器26将发动机扭矩的至少一部分传递到m/g18,然后从m/g18传递通过变矩器22和齿轮箱24。当发动机14单独地提供推进车辆必需的扭矩时,这种运转模式可被称为“发动机模式”、“纯发动机模式”或“机械模式”。

m/g18可通过提供额外的动力来协助发动机14转动轴30。此工作模式可被称作“混合动力模式”、“发动机-马达模式”或“电动辅助模式”。

为了使用m/g18作为唯一的动力源来驱动车辆,除了分离离合器26使发动机14与动力传动系12的其余部分隔离以外,动力流保持相同。在此期间可禁用或者以其他方式关断发动机14内的燃烧以节省燃料。牵引电池20通过线路54将储存的电能传递到可包括(比如)逆变器的电力电子器件56。电力电子器件56将来自电池20的dc电压转化为将被m/g18使用的ac电压。控制器50命令电力电子器件56将来自电池20的电压转化为提供到m/g18的ac电压,以将正扭矩或负扭矩提供到轴30。此工作模式可被称为“纯电动模式”、“ev(电动车辆)模式”或“马达模式”。

在任意工作模式下,m/g18可充当马达并为动力传动系12提供驱动力。可选地,m/g18可充当发电机并将来自动力传动系12的动能转化为电能从而储存在电池20中。例如,m/g18可在发动机14正在为车辆10提供推进动力时充当发电机。此外,m/g18可在再生制动期间充当发电机,在再生制动期间,来自旋转的车轮42的旋转能量通过齿轮箱24传递回去并被转化为电能而储存在电池20中。

应理解的是,图1所示出的示意图仅为示例性的,并且不意味着限制。可考虑利用发动机和马达两者的选择性接合来使动力传递通过变速器的其他配置。例如,m/g18可相对于曲轴28偏移,并且/或者m/g18可被设置在变矩器22和齿轮箱24之间。在不脱离本公开的范围的情况下可考虑其他配置。

如上所述,可通过使分离离合器接合而使用马达来启动发动机。在分离离合器接合期间,马达需要补偿正在通过离合器传递的扭矩。为了在接合期间将传动系与扭矩扰动进一步地隔离开,可断开变矩器旁通离合器。使变矩器旁通离合器断开/打滑起低通滤波器的作用并抑制扭矩扰动传递通过传动系。

然而,在发动机启动期间,变矩器旁通离合器的断开或打滑的直接结果是可能产生扭矩洞。扭矩洞可与机械路径扭矩(即,变矩器旁通离合器容量)的减小成比例。传递通过变矩器的扭矩是液压路径扭矩和机械路径扭矩(变矩器旁通离合器容量)的组合。变矩器还在泵轮上产生反作用扭矩。

τimpeller=τhydraulic+τmechanical(1)

如等式(1)所示,τimpeller是泵轮上的反作用扭矩,τmechanical是通过变矩器旁通离合器传递的扭矩的机械分量,τhydraulic是通过变矩器传递的扭矩的液压分量,其是变矩器两侧的滑差和泵轮转速的函数。当变矩器旁通离合器断开时,仅通过液压路径传递扭矩。当变矩器旁通离合器锁止时,液压路径被绕过而全部的扭矩通过旁通离合器传递。

对于给定的变矩器,使用容量因子(capacityfactor)曲线和扭矩比曲线来计算涡轮扭矩τturbine和液压扭矩τhydraulic使用。

τturbine=τhydraulic*tr(sr)+τmechanical(3)

如等式(2)、(3)和(4)所示,k是容量因子曲线,tr是扭矩比曲线,并且两者都是转速比sr的函数。此外,τhydraulic和τturbine分别是液压扭矩和涡轮扭矩。

随着变矩器旁通离合器容量的减小,马达扭矩将趋向使泵轮加速至较高值,从而产生正滑差并通过液压路径传递额外的扭矩。另外,当马达加速至新的泵轮转速时,如果新产生的泵轮转速经过了电动马达拐点(kneepoint),则可用的马达扭矩将随着泵轮转速的增大而减小。这将减小用于车辆推进的可用的扭矩。

参照图2,示出了示出可用的马达扭矩和马达转速之间的关系的曲线图。如图2所示,经过拐点200后,马达的功率受限,并且最大马达扭矩随马达转速增大而减小。另外,如果发动机启转阈值不考虑可用的马达扭矩的这个动态变化,则在发动机启动期间变矩器旁通离合器的断开或打滑将造成扭矩洞。

图3和图4描绘了用于基于可用马达扭矩的归因于在发动机启动期间变矩器旁通离合器的断开或打滑的这种下降或变化而更改车辆控制器内的发动机启转(epu)逻辑的控制算法。更具体地,提供了用于计算虚拟泵轮转速的方法,虚拟泵轮转速是在变矩器旁通离合器断开或以预定的值打滑的情况下的泵轮转速。然后,以这个虚拟泵轮转速而不是当前马达转速计算用于epu的最大可用马达扭矩。这考虑了在发动机启动期间变矩器旁通离合器实际上断开或打滑时的最大可用马达扭矩的变化。还提供了用于动态地计算因变矩器的松开而需要经由变矩器的液压路径传递的额外的扭矩的控制算法。

如本领域普通技术人员将理解的,图3和图4中所表示的功能可根据特定的应用和实施方式而由软件和/或硬件执行。可根据特定的处理策略(诸如事件驱动、中断驱动等)而以与图3和图4所示的顺序或次序不同的顺序或次序执行各种功能。类似地,虽然未明确地示出,一个或更多个步骤或功能可被重复地执行、以并行的方式执行以及/或者在特定的工况下或在特定的应用中可被省略。

参照图3,示出了这样的流程图,该流程图示出了在发动机启动期间变矩器旁通离合器被命令为打滑时用于epu控制的方法。该方法在框300处开始,并且在框302处控制算法确定变矩器旁通离合器是否锁止。如果在框302处变矩器旁通离合器已经断开,则在框304处使用在当前马达转速下的最大马达扭矩和当前马达扭矩基于马达扭矩限制来确定epu。程序将在框318处结束。具体地,当变矩器旁通离合器已断开时,可使用等式(5)来确定epu。

epu=(τmotor,max-cal)<τmotor(5)

如等式(5)所示,epu是标志(flag),并且当车辆控制器基于马达扭矩限制计算出发动机应当被启动时,epu为真(true),其中,τmotor,max是在当前马达转速下的最大可用马达扭矩,cal是可校准的阈值,τmotor是在给定的时刻的实际马达扭矩。

如果在框302处变矩器旁通离合器锁止,则在框306处控制算法计算变矩器旁通离合器两侧的期望的滑差ωslip。在发动机启动期间,变矩器旁通离合器可被命令至预定的滑差,以使扰动与发动机启动隔离。预定或期望的滑差ωslip可以是当前驾驶员需求、当前车辆速度和/或其他变量的函数,如输入框308处所示。基于期望的滑差ωslip,可在框310处使用当前涡轮转速ωturbine(或泵轮转速ωimpeller)和期望的滑差ωslip来计算虚拟泵轮转速ωimpeller,virt。当变矩器旁通离合器锁止时,泵轮转速和涡轮转速相同。具体地,可使用等式(6)来计算虚拟泵轮转速ωimpeller,virt可使用。

ωimpeller,virt=ωturbine+ωslip(6)

在框312处,基于这个虚拟泵轮转速ωimpeller,virt,控制算法使用虚拟泵轮转速ωimpeller,virt和当前涡轮转速ωturbine来计算虚拟液压扭矩τhydraulic,virt,虚拟液压扭矩τhydraulic,virt将通过使泵轮比涡轮旋转得更快而产生。

如等式(7)和(8)所示,srvirt是虚拟泵轮转速ωimpeller,virt与当前或目前涡轮转速ωturbine之比而τhydraulic,virt是虚拟液压扭矩。然后,在框314处通过虚拟泵轮转速ωimpeller,virt和当前泵轮转速ωimpeller来计算期望的加速度。

如等式(9)所示,α是期望的马达加速度随时间t的变化。在变矩器旁通离合器打滑之前和之后产生相同的涡轮扭矩所需的泵轮扭矩的量发生变化。泵轮扭矩的变化可使用等式(10)到(13)来计算,如下所示。

τturbine=τhydraulic,virt*tr(srvirt)+τmechanical,virt(10)

τimpeller,virt=τhydraulic,virt+τmechanical,virt(11)

δτimpeller=τimpeller,virt-τturbine(12)

δτimpeller=τhydraulic,virt*(1-tr(srvirt))(13)

然后,在框316处,控制算法使用当前马达扭矩、泵轮扭矩的变化和在虚拟泵轮转速下的最大马达扭矩来计算是否需要基于马达扭矩限制的epu。

epu=(τmotor,max-δτimpeller-iα-cal)<τmotor(14)

如等(14)所示,epu是标志,并且当车辆控制器基于马达扭矩限制计算出发动机应当被启动时,epu为真。在此,τmotor,max是以虚拟泵轮转速ωimpeller,virt计算的最大可用马达扭矩,δτimpeller是保持涡轮扭矩恒定所需的泵轮扭矩的变化,i是马达和泵轮的惯量,α是期望的马达加速度的变化,cal是可校准的阈值,τmotor是在给定的时刻的实际马达扭矩。程序在框318处结束。

参照图4,示出了这样的流程图,该流程图示出了在发动机启动期间当变矩器旁通离合器被命令为完全地断开时用于epu控制的另一方法。该方法在框400处开始,并且在框402处控制算法确定变矩器旁通离合器是否锁止。如果在框402处变矩器旁通离合器已经断开,则该算法继续至框404,在框404处使用在当前马达转速下的最大马达扭矩τmotor,max和当前马达扭矩τmotor基于马达扭矩限制来确定epu。然后,程序将在框412处结束。具体地,当变矩器旁通离合器已经断开时,可使用上述的等式(5)来确定epu。

如果在框402处变矩器旁通离合器锁止,则控制算法继续至框406,在框406处使用当前涡轮扭矩τturbine和当前涡轮转速ωturbine来计算虚拟液压泵轮扭矩τhydraulic,virt和虚拟泵轮转速ωimpeller,virt。上述的变矩器模型等式(1)到(4)可在数值上求反,以反转变矩器模型的因果关系并预测针对给定的涡轮转速和涡轮扭矩的泵轮转速和液压泵轮扭矩。

τhydraulic,virt=f(τturbine,ωturbine)(15)

ωimpeller,virt=g(τturbine,ωturbine)(16)

如等式(15)和(16)所示,f和g是通过对式(1)到式(4)进行求反而获得的传递函数。在任意给定的时刻,对于给定的涡轮扭矩和涡轮转速,可使用等式(15)和(16)来计算虚拟液压泵轮扭矩τhydraulic,virt和虚拟泵轮转速ωimpeller,virt。可使用当前涡轮转速ωturbine(或泵轮转速ωimpeller)来计算虚拟泵轮转速ωimpeller,virt,当前涡轮转速ωturbine(或泵轮转速ωimpeller)将引起在锁止变矩器状态和断开变矩器状态之间使涡轮扭矩保持恒定的通过变矩器的液压扭矩。虚拟泵轮转速ωimpeller,virt和虚拟液压泵轮扭矩τhydraulic,virt是在变矩器旁通离合器完全断开的情况下产生的针对当前涡轮转速ωturbine和当前涡轮扭矩τturbine的转速和扭矩。

在框408处,控制算法使用上述的等式(9)来通过虚拟泵轮转速ωimpeller,virt和当前泵轮转速ωimpeller计算期望的加速度α。然后,等式(10)到(13)可用于确定保持涡轮扭矩恒定所需的泵轮扭矩的变化δτimpeller。然后,在框410处,使用当前马达扭矩、保持涡轮扭矩恒定所需的泵轮扭矩的变化以及在虚拟泵轮转速下的最大马达扭矩来确定是否需要基于马达扭矩限制的epu。

epu=(τmotor,max-δτimpeller-iα-cal)<τmotor(17)

如等式(17)所示,epu是标志,并且当车辆控制器基于马达扭矩限制计算出发动机应当被启动时,epu为真。在此,τmotor,max是在虚拟泵轮转速ωimpeller,virt下的最大可用马达扭矩,δτimpeller是泵轮扭矩的变化,i是马达和泵轮的惯量,α是期望的马达加速度的变化,cal是可校准的阈值,τmotor是在给定的时刻的实际马达扭矩。算法在框412处结束。

通过本文中示出的代表性实施例可以看出,根据本公开的实施例基于发动机启转阈值而提供了鲁棒且高效的发动机启动,所述发动机启转阈值在泵轮转速随着变矩器旁通离合器的断开/打滑而变化时考虑最大可用马达扭矩的变化。一个或更多个实施例提供动态计算的扭矩,以填充由变矩器旁通离合器的松开产生的扭矩洞,从而提供传动系与发动机启动扰动的隔离,这可提升整体车辆性能和效率。

虽然上文描述了示例性实施例,但并非意味着这些实施例描述了本公开的所有可能的形式。更确切地,说明书中使用的词语为描述性词语而非限制性词语,并且应理解的是,在不脱离本公开的精神和范围的情况下可做出各种改变。此外,可组合各种实现的实施例的特征以形成本公开的进一步的实施例。尽管已详细地描绘了最佳模型,但是熟悉本领域的技术人员将识别出权利要求的范围内的各种可选的设计和实施例。尽管各种实施例可能已被描述为在一个或更多个特性方面提供优势或优于其它实施例,但是如本领域的技术人员注意到的,根据具体应用和实施方式,一个或更多个特性可被折衷,以实现期望的系统属性。这些属性包括但不限于:成本、强度、耐用性、生命周期成本、可销售性、外观、封装、尺寸、可维护性、重量、可制造性、易组装性等。被描述为在一个或更多个特性方面不如其它实施例或现有技术的实施方式合意的本文中所讨论的实施例并不在本公开的范围之外,并可被期望用于特定应用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1