用于减少皮带打滑的装置的制作方法

文档序号:19187639发布日期:2019-11-20 01:40阅读:259来源:国知局
用于减少皮带打滑的装置的制作方法

本发明总体上涉及一种用于减少皮带打滑的装置。更具体地说,本发明涉及这样一种用于减少皮带打滑的装置,该装置能够减少由于发动机振动而发生在皮带中的打滑,所述皮带设置成在发动机和在混合动力车辆等中作为电动机的混合动力起动发电机(hsg)之间传递转矩。



背景技术:

通常,使用通过化石燃料的燃烧驱动的发动机和通过电能操作的电动机产生驱动轮的旋转力的混合动力车辆考虑各种驾驶条件和车辆状况来确定是否驱动发动机。

为了驱动混合动力车辆中的发动机,需要单独的起动电动机来起动发动机,并且需要发电机在发动机运转的同时将发动机产生的旋转能量转换成电能。在混合动力车辆中设置有充当起动电动机和发电机的混合动力起动发电机(hsg),其中hsg的旋转轴和发动机的旋转轴通过皮带彼此皮带轮联接。

为了开始驱动发动机,hsg作为起动发动机的电动机运行,并且在发动机运转时,hsg作为发电机运行,通过皮带接收发动机的旋转力并且产生电能。

在这种应用于混合动力车辆的皮带连接结构中,当由于发动机的旋转振动而对皮带施加载荷时发生皮带打滑。皮带中发生的打滑不仅可能导致转矩传递的损失,而且还可能导致皮带的耐久性变差。

以上陈述仅仅旨在帮助理解本发明的背景,而不表示本发明落入本领域技术人员公知的现有技术的范围内。



技术实现要素:

因此,本发明已经考虑到现有技术中出现的上述问题,并且本发明旨在提出一种用于减少皮带打滑的装置,该装置能够通过控制技术减少或消除发生在皮带中的打滑而无需增加物理机构,所述皮带在混合动力车辆中通过皮带轮联接发动机和混合动力起动发电机(hsg)。

为了实现上述目的,提供用于减少车辆皮带打滑的装置,其中车辆包括作为振动源的发动机和通过皮带连接至发动机以传递发动机转矩的电动机,所述装置包括:信号发生器,所述信号发生器被配置为产生参考信号,所述参考信号的频率与造成皮带打滑的发动机的振动相对应;自适应滤波器,所述自适应滤波器被配置为计算滤波器系数以去除发动机的转速和电动机的转速之间的误差值并将滤波器系数应用于参考信号以产生参考转矩信号以驱动电动机;和转矩补偿器,所述转矩补偿器被配置为通过基于发动机的转矩改变参考转矩信号的振幅来产生皮带打滑补偿转矩信号,并且应用皮带打滑补偿转矩信号以确定电动机的最终转矩指令。

信号发生器可以考虑在发动机的一个旋转周期内发生的动力冲程数以及使用接合的皮带联接至发动机的旋转轴的皮带轮和联接至电动机的旋转轴的皮带轮之间的皮带轮比率,来确定参考信号。

信号发生器可以如等式[x(k)=sinr1r2θ1]那样产生参考信号(θ1:发动机的旋转角度,r1:发动机的每一个旋转周期的动力冲程数,r2:皮带轮比率)。

自适应滤波器还可以被配置为:计算滤波器系数以最小化发动机的实际速度和电动机的实际速度之间的误差值;并且通过应用滤波器系数来过滤参考信号,从而通过反映至电动机的发动机的动力冲程产生具有振动发生频率的电动机的参考转矩信号。

自适应滤波器可以使用递归最小二乘(rls)算法来计算滤波器系数以最小化误差值。

自适应滤波器可以具有有限脉冲响应(fir)格式或无限脉冲响应(iir)格式。

转矩补偿器可以被配置为:通过将大小为1的参考转矩信号乘以与发动机的输出转矩的大小相对应的转矩值来改变参考转矩信号的振幅,以产生皮带打滑补偿转矩信号;并且将皮带打滑补偿转矩信号添加至从单独的控制器接收的电动机的转矩指令,以产生电动机的最终转矩指令。

对应于发动机的输出转矩的大小的转矩值可以是发动机的实际输出转矩,通过将实际输出转矩乘以预定比例系数获得的值,或者通过将预定固定发动机转矩乘以预定比例系数而获得的值。

该装置还可包括相位补偿器,所述相位补偿器被配置为补偿发动机的实际速度和参考信号之间的相位差。

相位补偿器可以通过对电动机的旋转角度(所述电动机的旋转角度通过将发动机的一个旋转周期内发生的动力冲程数以及使用接合的皮带联接至发动机的旋转轴的皮带轮和联接至电动机的旋转轴的皮带轮之间的皮带轮比率应用至发动机的旋转角度而确定)进行微分来计算电动机的速度,并且基于自适应滤波器的滤波器系数和计算出的电动机的速度计算相位差从而为电动机的旋转角度补偿相位差。

电动机的旋转角度(θ2)可以通过等式[θ2=r1r2θ1]计算(r1:发动机的每一个旋转周期的动力冲程数,r2:皮带轮比率),电动机的速度(ω2)可以如等式[ω2=r1r2ω1](ω1:发动机的速度)那样通过对等式[θ2=r1r2θ1]的两边进行微分确定,并且相位差(α)可以通过等式确定((b0、b1:自适应滤波器的滤波器系数,ts:数据采集时间间隔)(采样时间))。

根据本发明的用于减少皮带打滑的装置,由于产生的参考信号具有与发动机的振动分量相对应的频率和相位,并且参考信号被应用于具有滤波器系数(所述滤波器系数最小化与发动机的转速和hsg的转速之间的差值相对应的误差值)的自适应滤波器从而导出hsg的转矩指令,因此能够抑制使发动机的旋转轴和hsg的旋转轴彼此连接的皮带中由于发动机振动而产生打滑。

特别地,根据用于减少皮带打滑的装置,由于可以通过控制电动机的旋转来抑制皮带打滑而不需要单独的机构或改变传统的设备配置,因此不会产生额外的成本。

附图说明

通过下文结合附图所呈现的详细描述将会更为清楚地理解本发明的以上和其它目的、特征以及其它优点,在这些附图中:

图1是显示应用了根据本发明各个实施方案的用于减少皮带打滑的装置的混合动力车辆的部分构造的框图;

图2是显示根据本发明实施方案的用于减少皮带打滑的装置的框图;

图3是显示应用于根据本发明实施方案的用于减少皮带打滑的装置的转矩补偿器的实施例的详细框图;

图4是显示应用于根据本发明实施方案的用于减少皮带打滑的装置的转矩补偿器的另一个实施例的详细框图;并且

图5是显示根据本发明各个实施方案的用于减少皮带打滑的装置的信号传输结构的框图。

具体实施方式

下面,将参考所附附图更为具体地描述根据本发明各个实施方案的用于减少皮带打滑的装置。

图1是显示应用了根据本发明各个实施方案的用于减少皮带打滑的装置的混合动力车辆的部分构造的框图。

如图1所示,应用了根据本发明各个实施方案的用于减少皮带打滑的装置10的混合动力车辆可以包括:发动机20,所述发动机20配置为燃烧燃料以产生动力;和混合动力起动发电机(hsg)40,所述混合动力起动发电机(hsg)40配置为充当电动机或发电机并且旋转轴通过皮带30连接至发动机20的旋转轴(曲轴)。换句话说,混合动力车辆包括这样的结构:联接至发动机20的旋转轴的皮带轮和连接至hsg40的旋转轴的皮带轮通过皮带30彼此连接以相互传递动力。在下文中,应当理解,振动源是指通过燃料爆炸产生旋转力而产生振动的发动机20,并且电动机是指具有与发动机20的旋转轴用皮带连接的旋转轴的hsg40。

在该结构中,发动机20是由于燃料的燃烧爆炸而产生振动的振动源,因此当动力通过皮带30传递时,发动机20不仅传递由于旋转轴产生的旋转力而且还传递振动分量。发动机20的振动引起皮带30的打滑。

在本发明的各个实施方案中,用于减少皮带打滑的装置10控制hsg40以产生旋转,该旋转具有与发动机20的旋转轴的转速中所包括的振动分量相同的频率和相位,从而减少将发动机20的旋转轴和hsg40的旋转轴连接在一起的皮带的打滑。

更具体地,可以使用包括作为振动源的发动机20、作为电动机的hsg40和皮带30的系统的频率响应特征来实现本发明的实施方案。通过进行电动机的转矩控制使得由电动机产生的速度变化匹配由振动源造成的振动分量、频率和相位,能够减少振动源和电动机之间的皮带由振动分量而造成的打滑。由于可以预先知道引起皮带打滑的振动源的频率和形状(波形),因此如果确定作为电动机的输出转矩的参考的参考信号具有匹配振动源的频率的形状,则两个速度具有频率相同但是相位和大小不同的相同波形。

如果振动源的速度是目标信号,则电动机的参考信号是输入信号,并且自适应滤波器被配置为最小化振动源的速度和电动机的速度之间的误差,能够通过使用最小化误差的滤波器系数计算频域中的相位差,从而确定电动机的输出转矩,或者能够通过使用最小化误差的滤波器输出来确定电动机的输出转矩。

图2是显示根据本发明实施方案的用于减少皮带打滑的装置的框图。

参考图2,根据本发明实施方案的用于减少皮带打滑的装置可以包括参考信号发生器11、自适应滤波器13和转矩补偿器15。在本发明中,用于减少皮带打滑的装置可以是使用控制回路来管理、指令或调节设备或系统的行为的控制系统。这里,可以使用反馈控制器来自动控制过程或操作。

在本发明中,参考信号发生器11可以是在模拟域或数字域中产生重复或非重复电子信号的电子设备,自适应滤波器13可以是具有线性滤波器的系统,所述线性滤波器具有由可变参数控制的传递函数,并且转矩补偿器15可以是控制系统中使用的用于改进反馈和控制系统中的信号响应的部件。

参考信号发生器11通过将发动机20的振动周期的比率以及联接至发动机20的旋转轴的皮带轮和联接至hsg40的旋转轴的皮带轮之间的比率反映至hsg40的旋转位置从而产生大小(magnitude)为1的单位正弦波参考信号,使得作为电动机的hsg40产生频率与作为振动源的发动机20的转速中所包括的振动的频率相同的信号。

例如,假设作为振动源的发动机20的旋转角度是θ1,考虑到发动机20的转速中所包括的振动周期和皮带轮比率,hsg40的旋转角度θ2由下面的等式1给出。

[等式1]

θ2=r1r2θ1

在等式1中,r1指的是发动机20的每一个旋转周期的振动(动力冲程)数,并且r2指的是通过皮带分别连接至发动机20和hsg40的旋转轴的皮带轮之间的皮带轮比率。

通过使用等式1生成大小为1的单位正弦波参考信号,如下面的等式2所示。

[等式2]

x(k)=sinr1r2θ1

在等式1中,r1指的是在发动机的旋转轴的一次旋转期间在发动机中发生的燃料爆炸的次数。例如,如果发动机20是四缸四冲程内燃机,则r1是2,因为每次机械地进行一次旋转就会发生两次爆炸。

参考信号发生器11可以被配置为将发动机20的振动周期的比率以及联接至发动机20的旋转轴的皮带轮和联接至hsg40的旋转轴的皮带轮之间的比率输入至hsg40的旋转位置,并且以预定映射的形式实现与输入相对应的输出(即,参考信号)。

作为计算参考信号的另一种方法,可以考虑振动源和电动机之间的皮带轮比率以及上述振动源的振动频率与基本旋转频率的比率来划分电动机的位置信号的电角度变化,并且可以对位置角度取正弦值,从而计算参考信号。

自适应滤波器13设置滤波器系数,所述滤波器系数最小化(例如,0)基于发动机20的速度d(k)和参考信号x(k)控制的hsg40的速度y(k)***的误差值,并且通过使用设定的滤波器系数对参考信号发生器11中产生的参考信号进行滤波。

自适应滤波器13可以包括滤波器系数计算器131和可变滤波器133。

滤波器系数计算器131可以接收从减法器17输出的误差值,用于计算实际发动机速度d(k)和实际hsg速度y(k)***之间的差值,并且通过使用递归最小二乘(rls)算法计算滤波器系数w(z)=b0、b1从而最小化接收的误差值。

可变滤波器133可以通过应用在滤波器系数计算器131中计算的滤波器系数来对参考信号x(k)进行滤波。可变滤波器133可以是有限脉冲响应(fir)滤波器或无限脉冲响应(iir)滤波器。

如果可变滤波器133以fir滤波器的形式实施,则输出由以下等式3给出。

[等式3]

y(k)=h(z)x(k),h(z)=b1z-1+b0

在等式3中,h(z)是fir滤波器,并且b0和b1是在滤波器系数计算器131中确定的滤波器系数。此外,在等式3中,可变滤波器133以一阶可变滤波器的形式实施,但是可变滤波器133的阶数可以根据需要是二阶或更高阶。

通过应用在滤波器系数计算器131中计算的滤波器系数对参考信号x(k)进行滤波,使得从可变滤波器133输出的信号y(k)可以是电动机的参考转矩信号(大小为1),其中发动机速度d(k)和hsg速度y(k)***之间的误差值被最小化。参考转矩信号是一种转矩指令,其可以考虑由发动机产生的振动来控制hsg的转矩,向其应用振动发生时段(或振动发生频率),并且取名参考转矩信号的原因是其大小为1的单位大小。

转矩补偿器15基于发动机转矩te调节从自适应滤波器13输出的参考转矩信号y(k)的大小,并且将在单独的控制器中计算的hsg40的转矩指令与调节的参考转矩信号y(k)*相加,从而产生hsg40的最终转矩指令y(k)**。

图3和4是显示应用于根据本发明各个实施方案的减少皮带打滑的装置的转矩补偿器的实施例的详细框图。

首先,参考图3,根据本发明实施方案的用于减少皮带打滑的装置的转矩补偿器15还可包括振幅乘法器153和转矩加法器155。

振幅乘法器153将参考转矩信号y(k)乘以与发动机的输出转矩的大小相对应的转矩值te,从而产生用于减少皮带打滑的皮带打滑补偿转矩信号y(k)*。换句话说,振幅乘法器153通过将大小为1的参考转矩信号y(k)的振幅转换为与电动机转矩相对应的水平来产生皮带打滑补偿转矩信号y(k)*。

在振幅乘法器153中与参考转矩信号y(k)相乘的与发动机的输出转矩的大小相对应的转矩值te可以是发动机的实时输出转矩,通过将发动机的实时输出转矩乘以预定的比例系数β而获得的值,或者通过将预定的固定发动机转矩乘以比例系数β而获得的值。

转矩加法器155将从单独的控制器接收的hsg40的转矩指令与在振幅乘法器153中计算的皮带打滑补偿转矩信号y(k)*相加,从而最终确定hsg40的转矩。

从振幅乘法器153输出的信号是皮带打滑补偿转矩信号y(k)*。换句话说,从振幅乘法器153输出的皮带打滑补偿转矩信号y(k)*是补偿由于发动机爆炸造成的振动而引起的皮带打滑所需的转矩。为了实现车辆的起动机和发电机功能(其为hsg40的原始功能),hsg40的转矩指令可以通过单独的控制器(例如,混合动力控制单元(hcu))提供给hsg40。

因此,为了控制hsg40执行其原始功能,转矩加法器155通过将在单独控制器中确定的转矩指令与如上所述的皮带打滑补偿转矩信号组合来产生用于控制hsg40的最终转矩指令y(k)**,并将其传递到hsg40。

hsg40的旋转由最终转矩指令y(k)**控制。这里,可以通过设置在hsg40中的旋转角度检测器(未显示)检测hsg40的转子位置,并且可以通过对检测到的转子位置进行微分而导出hsg40的转速y(k)***。

可以通过减法器17计算与发动机的转速d(k)和hsg40的转速y(k)***之间的差值相对应的误差值,并且将误差值提供给如上所述的滤波器系数计算器131从而可以计算能够使误差值最小化的滤波器系数(可以收敛到零)。

如上所述,本发明的实施方案被配置为通过导出能够使与发动机的转速d(k)和hsg40转速y(k)***之间的差值相对应的误差值最小化的转矩指令来控制hsg,因此能够抑制使发动机和hsg的旋转轴彼此连接的皮带出现打滑。

特别地,本发明的实施方案被配置成通过控制电动机的旋转来抑制皮带打滑,而不需要单独的机构或改变传统的设备配置,从而不会产生额外的成本。

图4所示的实施方案与图3所示的实施方案的不同之处在于转矩补偿器15还包括相位补偿器151。在图4中,相位补偿器151显示为属于转矩补偿器15,但是在实际实施中,相位补偿器151可以与转矩补偿器15分开实施,或者可以在自适应滤波器中实施。

图4的实施方案还包括相位补偿器151。提供相位补偿器151以补偿发动机速度d(k)和在参考信号发生器11中计算的参考信号x(k)(其频率与由发动机爆炸引起的振动分量的频率相同)之间的相位差。图4的实施方案能够通过补偿发动机速度d(k)和参考信号x(k)之间的相位差从而控制引起皮带打滑的发动机速度和补偿皮带打滑的电动机速度以更精确地在相同相位上发生。

为了补偿皮带打滑,相位补偿器151将hsg40的旋转角度θ2相对于参考信号发生器11中产生的参考信号进行微分,并且如等式4中那样计算速度信号。基于速度信号和由滤波器系数计算器131确定的系数,在参考信号发生器11中产生的参考信号和发动机20的速度之间的相位差由下面的等式5给出。

[等式4]

ω2=r1r2ω1

[等式5]

在等式4和等式5中,ω指的是通过对旋转角度进行微分计算的转速(速度信号),α指的是相位差,并且ts指的是相位补偿计算的数据采集时间间隔,即采样时间。

相位补偿器151通过反映等式5中所示的相位差来产生参考转矩信号y(k)。换句话说,在图3所示的实施方案中,参考转矩信号y(k)通过使用参考信号“x(k)=sinθ2”来计算,但是在图4的实施方案中,参考转矩信号y(k)可以通过使用具有相位补偿的参考信号“x(k)=sin(θ2+α)”来确定。

图4所示的振幅乘法器153和转矩加法器155具有与参考图3所述的相同配置,并且其操作也相同,因此将省略重复的描述。

图5是显示根据本发明各个实施方案的用于减少皮带打滑的装置的信号传输结构的框图。

图5所示的元件可以以各种方式添加从而在图2所示的信号传输过程中进行更精确的信号传输。

例如,带通滤波器(bpf)191、195能够仅分别通过在输入减法器17的发动机速度信号d(k)和hsg40的速度信号y(k)***中与造成打滑的发动机振动相对应的频带中的频率,从而计算误差值。这允许在发生皮带打滑的频带中更精确地计算由减法器17计算的误差值。

此外,带通滤波器(bpf)197能够仅通过在表示减法器17中计算的误差值的信号中与造成打滑的发动机振动相对应的频带中的频率,从而将其提供给滤波器系数计算器131。bpf197还允许将与发生皮带打滑的频带相对应的误差值提供给滤波器系数计算器131,从而能够更精确地生成滤波器系数计算器131的滤波器系数。

此外,在当为了计算皮带打滑而计算发动机速度和hsg速度之间的差值时需要考虑皮带系统的传递功能的情况下,附加的相位补偿器193应用预定的附加相位补偿公式c(k)进行附加的相位补偿,由此能够更精确地匹配发动机振动和抑制发动机振动的hsg的驱动相位。

在上面的描述中,用于检测发动机或hsg(电动机)的旋转角度的特定元件、用于从检测的旋转角度导出转速的特定元件,或用于检测发动机转矩的特定元件已经省略,但是可以通过本领域已知的各种检测手段和计算技术容易地实施。

尽管出于说明的目的已公开了本发明的示例性实施方案,但是本领域技术人员应当理解,各种修改、增加和删减是可能的,其并不背离所附权利要求中所公开的本发明的范围和精神。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1