用于确定具有至少一个离合器的自动变速器的离合器参数的方法与流程

文档序号:21188028发布日期:2020-06-20 18:16阅读:275来源:国知局
用于确定具有至少一个离合器的自动变速器的离合器参数的方法与流程

本发明涉及一种具有权利要求1的前序部分技术特征的、用于确定具有至少一个离合器的自动变速器的变速器参数和/或离合器参数的方法,该方法尤其用于自动变速器的基础测量、尤其自动化的手动变速器和/或双离合变速器的基础测量。

在现有技术中已知多种变速器,尤其自动变速器,所述变速器具有至少一个离合器、尤其摩擦离合器并且能够以不同方式构造。该类型的具有至少一个离合器的自动变速器则尤其被构造为自动化的手动变速器和/或构造为双离合变速器、尤其构造为自动化的双离合变速器。

相应的机动车的驱动链至少部分预先制备,并且随后与机动车的车身、尤其在所谓的“hochzeit(车身与底盘装配)”时相应有效地连接或相互间相应地耦连。然而原则上尤其事先通过所谓的“基础测量”对各个驱动链的变速器参数和/或离合器参数进行测量。或者换言之:为对自动变速器进行基础测量,各个具有至少一个离合器的自动变速器(和/或驱动链的其他部件)被定位在所谓的“eol测试台”上,由此随后在该处相应地调整和/或调试各个部件,从而使尤其在制造中出现的不同的制造误差不再对自动变速器的控制和/或操控和/或对离合器的控制和/或操控产生影响。

在自动变速器的所谓“基础测量”中则尤其借助至少一个可操控的同步设备确定离合器的拖曳力矩和/或半结合点(kisspoint)。自动变速器的离合器具有至少一个能与内燃机输出轴作用连接的和/或作用连接的驱动侧,离合器的驱动侧尤其能够通过所谓的“k0离合器”与内燃机输出轴作用连接。此外,离合器还具有至少一个与至少一个变速器输入轴作用连接的传动侧(输出侧)。离合器尤其构造为湿式运行的摩擦离合器和/或盘式离合器,其中,所述传动器输出轴和/或(根据分别专门构造的自动变速器)传动器的一个主动轴或多个主动轴尤其随后在eol测试台上被锁死或者说已经被锁死,尤其插入驻车锁,然而所述驻车锁能够被或者已经被离合器的驱动侧驱动。

在本发明所依据的现有技术中(de10308517b4),已知一种用于确定具有至少一个离合器的自动变速器的变速器参数和/或离合器参数的方法,所述自动变速器被构造为双离合变速器,其中,在eol测试台上通过内燃机输出轴有效驱动离合器的驱动侧,并且随后以特定的方式和方法确定相应配属于空转的变速器输入轴的各个离合器和/或可控制的同步设备的参数。因此,在内燃机工作时并且在通过相应被驱动的离合器驱动的变速器输入轴空转时,对定位在eol测试台上的驱动链和或定位在该处的自动变速器(双离合变速器)进行基础测量,其中,变速器输入轴尤其首先可以“空转”,这是因为所有配属于相应的变速器输入轴的同步设备都首先被连入中性位置(或者说平衡位置)。在此处所示的方法中,通过非常特殊的方式确定离合器或半结合点的拖曳力矩或实施离合器特征曲线调试。

此外在现有技术中、也即在ep2100050b1中,还描述或公开了一种用于调试离合器的特征曲线的方法。然而只有在实施变速器输入轴转速的规定变化时才能进行该方法,也就是说只有当变速器输入轴转速在特定条件下超过预定的极限值时才能进行该方法。

但是在现有技术中已知的方法尚未理想地设计,尤其自动变速器的基础测试在eol测试台上总是出现问题。例如还已知特殊构造的自动变速器,其中,该类型的专门构造的自动变速器中,空转机构与一个挡位、尤其一挡相对应,或者相应的该挡位借助空转机构“与空转机构连接”。在此,当换挡轮转速(通过该挡位的传动比得到的驱动轴转速)小于相应的变速器输出轴/主动轴的转速时,空转机构解脱/断开。如果换挡轮上的驱动力矩具有与变速器输出轴转速/主动轴转速相同的转速时,则空转机构闭合。该空转机构随后则传递转矩,换挡轮和变速器输出轴/主动轴则形成同步。如上所述,该类型构造的自动变速器不能在eol测试台上测试,因为如此构造的自动变速器的变速器输出轴和/或主动轴被锁死,尤其随后驻车锁被插入,并且随后上述空转机构闭合,因为变速器输出轴或相应的主动轴静止(并且由此换挡轮不能更缓慢地旋转)。因此,对具有上述空转结构连接的挡位的自动变速器的相应的基础测试不能以普通的方法完成。此外,从环境视角来看尤其在eol测试台上实施的基础测量的问题在于:内燃机正在运行,一方面消耗燃料,而且另一方面产生废气。因此,从油耗以及废气生成的视角来看,在现有技术中已知的自动变速器的基础测量也因此尚未理想地设计。

因此,本发明所要解决的技术问题在于,设计和改进上述类型的方法,从而一方面基于环境角度改进所述方法,另一方面能够实现在eol测试台上对尤其具有至少一个空转机构连接的挡位的自动变速器的基础测量。

上述技术问题主要通过权利要求1的技术特征解决。

离合器的驱动侧借助电动机被驱动,其中,存在至少一个空转机构连接的挡位,并且其中,离合器的驱动侧沿与内燃机输出轴的旋转方向相反的旋转方向被电动机驱动。由此主要实现的是,尤其能够在eol测试台上实施对该类型构造的自动变速器的基础测量,也即沿相反的旋转方向(逆向于内燃机的旋转方向)实施自动变速器的基础测量,也即离合器的驱动侧此时借助电动机沿与内燃机的旋转方向相反的方向被驱动。在此,随后打开空转机构(freiluaf;或者说自由轮),从而由此尽管在驻车锁仍被插入并且机动车停在eol测试台上时变速器输出轴和/或一个(或多个)主动轴(triebswelle)停止或被锁死,仍实现自动变速器的变速器输入轴的旋转。因此,自动变速器的基础测量或变速器参数和/或离合器参数的确定在旋转方向与内燃机或内燃机输出轴的旋转方向相反的情况下完成。对于驱动链构造为混合驱动链、尤其机动车构造为混合动力交通工具的情况下,可以借助驱动链的电动机驱动离合器的驱动侧。尤其当机动车部并非构造为混合动力交通工具的情况下,离合器的驱动侧可以通过外置存在的电动机被驱动。

由此实现大量的可能性,然尤其避免了上述弊端。

根据本发明的方法尤其以以下步骤实施:

在第一步骤中,尤其在第一时刻以确定的离合器压紧力将离合器闭合,尤其实现确定的离合器力矩。由此将变速器输入轴的转速在数值上提高至离合器的驱动侧的转速。变速器输入轴的转速尤其在第二时刻基本上达到离合器的驱动侧的转速,尤其保持最小转差率和/或稳定的转速差(其中,在上述情况下各个轴的转速则“基本上”相同,尤其差别在于最小拖曳或确定的转速差)。

在第二步骤中,尤其在第三时刻控制同步设备,也即借助同步设备开始变速器的挡位的同步过程。在此,同步设备被尤其连续升高的同步力加载。

当尤其在第四时刻测得确定的第一同步力时,则变速器输入轴的转速与离合器的驱动侧的转速脱离。由此则确定和/或计算出离合器的拖曳力矩。

尤其在第五时刻、尤其当在变速器输入轴与离合器的驱动侧之间测得确定的转差率和/或确定的转速差时,则测定所施加的确定的第二同步力。第二同步力被使用或援引用于确定离合器的半结合点,尤其主要确定相应的同步力矩。

在后续的方法步骤中,在确定和/或调试离合器的半结合点之前,首先使同步设备达到其中性位置,从而使变速器输入轴的转速在数值上接近离合器的驱动侧的转速或者说基本上达到离合器的驱动侧的转速,尤其变速器输入轴的转速在第六时刻基本上达到离合器的驱动侧的转速。

在半结合点被确定和/或调试之前,离合器以最大离合器压力、尤其在第五时刻之后和/或在第六时刻之后、然而特别在第六时刻之后闭合。变速器输入轴的转速尤其在第五时刻与第六时刻之间在数值上接近离合器的驱动侧的转速,或者变速器输入轴的转速尤其在第六时刻达到离合器的驱动侧的转速。

在尤其第六时刻之后离合器以最大离合器压力闭合后,同步设备以之前确定的第二同步力闭合,并且随后降低、尤其连续地降低离合器压力。尤其在第七时刻、也即当第二同步力或所对应的同步力矩在数值上超过当前施加的离合器压力时,变速器输入轴的转速与离合器的驱动侧的转速脱离。那么尤其在第八时刻在变速器输入轴与离合器的驱动侧之间产生确定的转差率和/或确定的转速差时,则据此确定和/或随后调试离合器的半结合点。

利用根据本发明的方法,实现相应的优点并且避免了上述弊端。

在此存在许多可能,以有利的方式设计和改进按照本发明的方法。为此应主要援引从属于权利要求1的多个权利要求以及根据优选实施例的说明参照以下说明以及附图。在附图中;

图1示出尤其构造为自动化的手动变速器的双离合变速器的变速器视图,其中,在此将一挡构造为空转机构连接的挡位,或者说一挡具有空转机构,图2以示意图示出根据本发明的方法的实施情况,其具有以示意性图形示出的各个方法步骤。

图1至图2应具体示出用于确定具有至少一个离合器k、在此尤其两个离合器k1和k2的自动变速器1的变速器参数和/或离合器参数的方法,该方法尤其用于自动变速器1、尤其在此自动化手动变速器的基础测试,其中该自动变速器在此尤其构造为双离合变速器1a。

图1在此示出自动变速器1,所述自动变速器在此尤其构造为自动化的手动变速器、在此尤其双离合变速器1a,并且具有两个离合器k1和k2。

利用以下具体描述的方法,借助至少一个可操控的同步设备s1确定离合器k、在此尤其第一离合器k1的拖曳力矩和/或半结合点。所示双离合器的离合器k、在此尤其离合器k1和k2具有至少一个与内燃机输出轴2可作用连接和/或作用连接的驱动侧3和至少一个与变速器输入轴5作用连接的传动侧4。内燃机输出轴2与离合器k的驱动侧3之间设置的k0离合器在此并未具体示出。

针对此处所示双离合变速器1a的图1所示的实施例,该类型的离合器k被设计为双离合器,并且具有尤其两个设计为摩擦离合器的离合器k1和k2。双离合器或离合器k具有驱动侧3和传动侧4或者具体而言两个传动侧4a和4b,其中,在此尤其一个传动侧4、也即第一离合器k1的传动侧4a与变速器输入轴5作用连接。在第一离合器k1的闭合状态下,则能够将相应的转矩从离合器的驱动侧3经由传动侧4、在此传动侧4a传递至变速器输入轴5。

变速器输入轴5可以被称为第一变速器输入轴,其中,双离合变速器1a还具有第二变速器输入轴6。此外,还设置了至少一个变速器输出轴和/或在此所示双离合变速器1a的图1所示的实施例中设置了两个主动轴7和8,所述主动轴与未具体示出的车轴差速器作用连接。

当自动变速器1、尤其此处所示的双离合变速器1a尤其在eol测试台上被“基础性测量”时,离合器k的驱动侧3、在此第一离合器k1的驱动侧被驱动,如上所述。在此状态下还应注意的是,在此处所示的自动变速器1、尤其在此所示的双离合变速器1a中,空转机构f配属于一档g1,如示意图所示。双离合变速器1a在此具有多个挡位g、尤其至少六个挡位g1至g6和多个同步设备s、尤其至少三个同步设备s1至s3。

上述弊端则主要由此避免,即,离合器k的驱动侧3、在此尤其第一离合器k1的驱动侧3借助在此未示出的电动机被驱动,从而使至少一个空转机构连接的挡位、尤其是一挡g1连入空转机构或者说存在至少一个空转机构连接挡位、尤其一挡g1,并且离合器k的驱动侧3沿与内燃机输出轴2的旋转方向相反的旋转方向被电动机相应驱动。由此避免了上述弊端并且实现了相应的优点。

以下应进一步参照图2具体阐述根据本发明的方法的各个步骤。然而首先应注意的是,图2(基于该视图观察)示出负向的转矩和/或转速,因为根据本发明此时离合器k的驱动侧3的旋转和进而变速器输入轴5的旋转应显示出与内燃机输出轴2的正常的旋转方向相反的旋转方向。因此在y轴上以负号(-)标注在此所示的力矩或转速。然而在以下描述中若“在数值上”援引部分图2所示的数值/点/曲线,则应在该位置再次指明这一点。

图2在此示出,在第一步骤中,尤其在第一时刻t1,离合器k、在此第一离合器k1以确定的离合器压紧力mkup闭合,尤其实现确定的离合器力矩。此后,空转机构连接的变速器输入轴、在此第一变速器输入轴5的转速nfw在数值上被提高至离合器、在此第一离合器k1的驱动侧3的转速nmot,在此首先设定,离合器的驱动侧3的转速nmot基本上相当于电动机的转速(nmot)。变速器输入轴、在此第一变速器输入轴5的转速nfw尤其在第二时刻t2达到离合器k的驱动侧3的转速nmot。“基本上”这一表述尤其是指,尤其在维持最小转差率和/或稳定的转速差的情况下实现转速的同化。

在第二步骤中,尤其在第三时刻t3操控同步设备s、在此尤其图1中的同步设备s1,也即借助同步设备启动对变速器的与空转中的变速器输入轴5对应的挡位、例如三挡g3的同步过程,并且所述同步设备s1被尤其连续升高的同步力加载。在图2中在第三时刻t3与第五时刻t5之间示出该情况或者说示出与此对应的情况。

如图2所示,尤其在第四时刻t4,变速器输入轴5的转速ntw与离合器k的驱动侧3的转速nmot断开,其中,在此施加的第一同步力被测取和/或确定,并且由此能够测取和/或计算出离合器的拖曳力矩。

如图2所示,当在变速器输入轴、在此第一变速器输入轴5与离合器k、在此第一离合器k1的驱动侧3之间测取到确定的转差率和/或确定的转速差时,尤其在第五时刻t5测取所施加的确定的第二同步力。第二同步力被使用或援引用于确定离合器、在此第一离合器k1的半结合点,尤其主要确定相应的同步力矩msync。

在离合器、在此第一离合器k1的半结合点被确定和/或调试之前,可操控的同步设备s1首先尤其在第五时刻t5之后达到其中性位置。由此变速器输入轴5的转速nfw在数值上接近离合器k、在此第一离合器k1的驱动侧3的转速nmot,或者说基本上达到离合器k、在此第一离合器k1的驱动侧3的转速nmot。尤其在第六时刻t6,变速器输入轴5的转速nfw达到离合器k的驱动侧3的转速nmot,如图2所示。

此外如图2所示,离合器k、在此第一离合器k1以最大离合器压力mkupmax闭合,然而尤其在第五时刻t5之后和/或在第六时刻t6之后、然而特别在第六时刻t6之后闭合。在图2所示实施例中,当离合器k、在此第一离合器k1以最大离合器压力mkupmax闭合时,变速器输入轴5的转速nfm已经接近离合器k、在此第一离合器k1的驱动侧3的转速nmot,或者变速器输入轴5的转速nfm已经达到离合器k的驱动侧3的转速nmot。

在后续的步骤中,尤其在施加最大离合器压力mkupmax之后,同步设备s1以之前测定的第二同步力闭合,或者为此施加相应的同步力矩msync。在图2中在第三时刻t6与第七时刻t7之间示出该情况或者说示出与此对应的情况。此后离合器压力自离合器压力mkupmax开始尤其连续降低。尤其在第七时刻t7、尤其当第二同步力或所对应的同步力矩msync在数值上超过当前施加的离合器压力时,变速器输入轴5的转速与离合器k、在此第一离合器k1的驱动侧3的转速nmot脱离。这在图2中清楚示出。

那么尤其在第八时刻t8在变速器输入轴5与离合器k的驱动侧3之间产生确定的转差率和/或确定的转速差时,则据此确定离合器的半结合点和/或在方法进行中之后、尤其稍后调试离合器的半结合点。

如上所述,自动变速器1尤其构造为双离合变速器1a,然而也可以考虑其他形式的自动变速器。相应地设置或存在已知的其他部件、例如控制设备、用于确定、测量相应当前转速等的转速传感器。

机动车的驱动链可以构造为混合驱动链,并且因此具有至少一个电动机。对此情况,如果需要的话,混合驱动链的电动器恰好可以驱动离合器k、在此尤其第一离合器k1的驱动侧3。

然而还可以考虑的是,离合器的驱动侧通过外置的电动机、尤其通过存在于eol测试台上的电动机被驱动。

附图标记列表

1自动变速器

1a双离合变速器

2内燃机输出轴

3驱动侧

4传动侧

4a、4b离合器k1/k2的传动侧

5第一变速器输入轴

6第二变速器输入轴

7主动轴

8主动轴

msync同步力矩

mkup离合器压紧力/离合器力矩

mkupmax最大离合器压紧力/最大离合器力矩

k、k1、k2离合器,第一离合器和第二离合器

s、s1至s3同步设备

f空转机构

t1至t8第一时刻至第八时刻

g、g1至g6挡位/挡

nfw变速器输入轴的转速

nmot离合器的驱动侧的转速

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1