燃料电池车的制作方法

文档序号:18230007发布日期:2019-07-20 01:10阅读:196来源:国知局
燃料电池车的制作方法

本说明书所公开的技术涉及燃料电池车。尤其是,涉及具备对燃料电池的输出电压进行升压的升压转换器的燃料电池车。



背景技术:

在日本特开2011-90823号公报(专利文献1)中,公开了一种具备对燃料电池(fuelcell)的输出电压进行升压的升压转换器的燃料电池车。升压转换器的低电压端连接于燃料电池,升压转换器的高电压端连接于变换器。变换器将升压后的直流电力变换为适于马达的驱动的交流。一般,在升压转换器中,在高电压端的正极与负极之间连接有电流平滑用的电容器。在使燃料电池停止了时,在电容器中保持比燃料电池的输出电压高的电压。燃料电池也在停止后暂且保持着相应的电压。

在专利文献1的燃料电池车中,在使车辆的主开关断开了时,按以下的步骤使燃料电池和电容器放电。首先,虽然氧供给器停止,但不使泵停止,暂且继续燃料的供给。通过燃料的供给,持续发电直到残存的氧被消耗掉为止。在专利文献1的燃料电池车中,在残存的氧被消耗掉之后,使泵停止。接着,使升压转换器起动,使燃料电池的残存电荷向升压转换器的高电压侧放出。在将燃料电池的残存电荷放出之后,使升压转换器停止。然后,使变换器动作,通过变换器使电容器放电。



技术实现要素:

在专利文献1的燃料电池车中,使升压转换器动作来强制地使电荷从燃料电池放出。强制的电荷的放出有可能加快燃料电池的催化剂等的劣化。在电力停止时使升压转换器的电容器和燃料电池放电的燃料电池车中存在改善的余地。

本说明书所公开的燃料电池车具备行驶用的马达、变换器、燃料电池系统、第1升压转换器、及控制器。变换器将直流电力变换为驱动马达的交流电力。燃料电池系统是具备燃料电池、空气压缩机31、及燃料电池泵,通过供给氢燃料和氧而由燃料电池发电的装置。第1升压转换器的第1低电压端连接于燃料电池并且第1升压转换器的第1高电压端经由第1继电器连接于变换器。在第1高电压端的正极与负极之间连接有第1电容器。控制器按以下的顺序使电力停止。控制器首先使燃料电池系统停止。控制器在燃料电池的电压超过了预定的电压阈值的情况下,以不低于燃料电池的电压的方式使第1电容器放电。控制器在燃料电池的电压低于电压阈值的情况下,使第1电容器的放电停止,并且使第1继电器断开而将第1升压转换器和燃料电池从变换器切离。

在上述停止顺序中,由于在电容器的放电之前使燃料电池系统停止,所以燃料电池的电压自然而然地逐渐下降。在本说明书所公开的燃料电池车中,控制器以不低于燃料电池的电压的方式使第1电容器放电。随着燃料电池的电压下降,也使第1电容器放电。由于不进行从燃料电池的强制的电荷放出,所以能够抑制催化剂等的损伤。

上述燃料电池车的结构,尤其对于将燃料电池与变换器电切离的继电器不配置在燃料电池与第1升压转换器之间而配置在第1升压转换器与变换器之间的燃料电池车有效。上述燃料电池车在使与燃料电池连接着的第1升压转换器的电容器放电时不会损伤燃料电池。

控制器例如通过驱动变换器而使电流在马达中流动来使电容器放电。或者,在具有放电电阻的情况下,控制器也可以使用放电电阻来使电容器放电。电压阈值被设定为即使漏电也不会对周围的部件造成严重的损伤的程度的值。电压阈值例如为42伏。

本说明书所公开的燃料电池车也可以还具备蓄电池、第2升压转换器、及第2继电器。第2升压转换器的第2低电压端连接于蓄电池并且第2升压转换器的第2高电压端连接于变换器。第2继电器连接于第2升压转换器与蓄电池之间。在第2高电压端的正极与负极之间连接有第2电容器。在这样的燃料电池车的情况下,优选第2电容器也进行放电。控制器除了上述的停止顺序以外还执行以下的步骤。控制器先于第2电容器的放电使第2继电器断开而将蓄电池从第2升压转换器切离。在使燃料电池停止之后,控制器在燃料电池的电压超过了预定的电压阈值的情况下,以不低于燃料电池的电压的方式使第1电容器和第2电容器放电。控制器在燃料电池的电压低于电压阈值的情况下,使第1电容器和第2电容器的放电停止,并且使第1继电器断开而将第1升压转换器从变换器切离。最后,控制器使第2电容器放电。控制器使用变换器和马达、或者放电电阻来使第1电容器和第2电容器放电即可。

控制器也可以执行以下的顺序。控制器在开始第1电容器的放电之前燃料电池的电压低于电压阈值的情况下,使第1电容器放电至电压阈值,使第1继电器断开。在开始放电之前燃料电池的电压超过了电压阈值的情况下,通过使第1电容器和第2电容器急剧放电至电压阈值,能够在短时间内完成放电。本说明书所公开的技术的详细情况和进一步的改良用以下的“具体实施方式”进行说明。

附图说明

图1是燃料电池车的电力系统的框图。

图2是第1升压转换器的电路图。

图3是第2升压转换器的电路图。

图4是电力停止处理的流程图。

图5是电力停止处理的流程图(图4的后续)。

图6是电力停止处理的时间图。

具体实施方式

参照附图对实施例的燃料电池车100进行说明。图1中示出燃料电池车100的电力系统的框图。图中的箭头虚线表示信号线。附图标记37表示空气管,附图标记38表示燃料管。沿着空气管37描绘出的粗箭头线表示空气(氧)的流动,沿着燃料管38描绘出的粗箭头线表示燃料气体的流动。

燃料电池车100具备燃料电池2、蓄电池6、第1升压转换器10、第2升压转换器20、第1继电器4、第2继电器7、第1变换器5、及行驶用的马达32。

燃料电池2的输出电压例如为0伏~200伏,蓄电池6的输出电压例如为300伏。另一方面,行驶用的马达32的驱动电压例如为300伏~600伏。有时驱动电压比燃料电池2和蓄电池6的输出电压高。因此,燃料电池车100具备第1升压转换器10和第2升压转换器20。第1升压转换器10的低电压端12连接于燃料电池2,高电压端13经由第1继电器4连接于第1变换器5。第2升压转换器20的低电压端22经由第2继电器7连接于蓄电池6,高电压端23连接于第1变换器5。第1升压转换器10的电路结构在后面参照图2进行说明,在第1升压转换器10的高电压端的正极13a与负极13b之间连接有电容器14和电压传感器15。第2升压转换器20的电路结构在后面参照图3进行说明,在第2升压转换器20的高电压端的正极23a与负极23b之间连接有电容器24和电压传感器25。

电压传感器15计测第1升压转换器10的高电压端的正极13a与负极13b之间的电压。正极13a与负极13b之间的电压与电容器14的两端电压相等。电压传感器25计测第2升压转换器20的高电压端的正极23a与负极23b之间的电压。正极23a与负极23b之间的电压与电容器24的两端电压相等。燃料电池车100除了电压传感器15、25以外,还具备计测燃料电池2的输出电压的电压传感器3。电压传感器3、15、25的计测数据被向控制器9发送。

如先前所述,图1中的箭头虚线表示信号线。图1中的“tocntllr”的字符串表示“tocontroller”(向控制器9),意味着向控制器9发送信号(数据)的信号线与控制器9相连。“fromcntllr”的字符串表示“fromcontroller”(从控制器9),意味着用于控制器9发送信号的信号线与控制器9相连。此外,在燃料电池车100,在图示之外还配置有许多信号线、设备,但省略了它们的图示。

第1变换器5将升压后的直流电力变换为适于马达32的驱动的交流电力。第1升压转换器10、第2升压转换器20、第1变换器5由控制器9控制。控制器9根据车速和加速器开度的输出电压来决定马达32的目标输出。目标输出包括目标电压和目标频率。控制器9根据燃料电池2的输出电流和输出电压来决定第1升压转换器10和第2升压转换器20的输出比例。控制器9控制第1、第2升压转换器10、20以使得实现第1、第2升压转换器10、20的目标电压和各自的输出比例,并且控制第1变换器5以使得实现目标频率。

在第1升压转换器10的高电压端13和第2升压转换器20的高电压端23也连接有第2变换器8。第2变换器8驱动空气压缩机31。另外,在第2继电器7与第2升压转换器20之间连接有第3变换器33。第3变换器33驱动燃料泵34。

燃料电池系统40具备燃料电池2及空气压缩机31、燃料泵34。空气压缩机31通过空气管37向燃料电池2供给空气(氧)。空气压缩机31是向燃料电池2供给氧的氧供给器。燃料泵34通过燃料管38将燃料箱35的氢燃料向燃料电池2供给。控制器9也控制第2变换器8和第3变换器33。换言之,控制器9也控制空气压缩机31和燃料泵34。

第1继电器4是将变换器5、8与第1升压转换器10(及燃料电池2)之间连接、切断的开关,第2继电器7是将蓄电池6与第2升压转换器20之间连接、切断的开关。控制器9在车辆的主开关36被接通时,使第1继电器4闭合而将燃料电池2和第1升压转换器10连接于变换器5、8,使第2继电器7闭合而将蓄电池6连接于第2升压转换器20。当控制器9使第2继电器7闭合时,燃料电池车100能够用蓄电池6进行行驶。当控制器9使第1继电器4和第2继电器7闭合并使燃料电池系统40起动时,燃料电池车100成为能够使用蓄电池6和燃料电池2来行驶的状态。

另一方面,控制器9在车辆的主开关36被切换为断开时,使燃料电池2停止,使第1继电器4断开而使变换器5、8从第1升压转换器10(及燃料电池2)切离,并且使第2继电器7断开而将第2升压转换器20从蓄电池6切离。对由控制器9进行的电力停止处理在后叙述。

参照图2对第1升压转换器10的电路结构进行说明。图2是第1升压转换器10的电路图。第1升压转换器10具备晶体管16、二极管17a、17b、电抗器18、电容器14、19、及电压传感器15。在第1升压转换器10的低电压端12的正极12a连接有电抗器18的一端。在电抗器18的另一端连接有二极管17a的正极。二极管17a的负极连接于高电压端13的正极13a。在电抗器18与二极管17a的连接点连接有晶体管16的集电极。晶体管16的发射极连接于低电压端12的负极12b。低电压端12的负极12b直接连接于高电压端13的负极13b。二极管17b相对于晶体管16反并联连接。电容器14和电压传感器15如先前所述连接于高电压端13的正极13a与负极13b之间。电容器19连接于低电压端12的正极12a与负极12b之间。

晶体管16由控制器9(参照图1)控制。当晶体管16以预定的占空比反复导通截止时,施加到低电压端12的电压被升压并从高电压端13输出。图2的电路的第1升压转换器10是斩波型的电压转换器,输出电压脉动。连接于高电压端13的正极13a与负极13b之间的电容器14为了抑制第1升压转换器10的输出电压的脉动而设置。电容器14为大容量,积蓄相应的电能。由于在低电压端12的正极12a与高电压端13的正极13a之间连接有二极管17a,所以电流不会从高电压端13向低电压端12流动。在不使用燃料电池车100的期间,不优选电容器14仍保持着高电压,因此在使电力停止时,需要使电容器14放电。

参照图3对第2升压转换器20的电路结构进行说明。图3是第2升压转换器20的电路图。第2升压转换器20具备晶体管26a、26b、二极管27a、27b、电抗器28、电容器24、29、及电压传感器25。在第2升压转换器20的高电压端23的正极23a与负极23b之间,串联连接有2个晶体管26a、26b。在2个晶体管26a、26b的串联连接的中点与低电压端22的正极22a之间连接有电抗器28。在低电压端22的正极22a与负极22b之间连接有电容器29。低电压端22的负极22b直接连接于高电压端23的负极23b。二极管27a反并联连接于晶体管26a,二极管27b反并联连接于晶体管26b。电容器24和电压传感器25如先前所述连接于高电压端23的正极23a与负极23b之间。

图3所示的第2升压转换器20具备将施加到低电压端22的电压升压并向高电压端23输出的升压功能、和将施加到高电压端23的电压降压并向低电压端22输出的降压功能这双方。第2升压转换器20是所谓的双向dc-dc转换器。在本说明书中,由于着眼于升压功能,所以将图3的电路称为第2升压转换器20。

晶体管26a、26b由控制器9(参照图1)控制。当晶体管26b以预定的占空比反复导通截止时,施加到低电压端22的电压被升压并从高电压端23输出。当晶体管26a以预定的占空比反复导通截止时,施加到高电压端23的电压被降压并从低电压端22输出。当晶体管26a和晶体管26b以相辅相成的pwm信号反复导通截止时,根据低电压端22的电压和高电压端23的电压的平衡,自动切换升压和降压。行驶用的马达32对使用电力来输出驱动转矩和使用车辆的减速能来生成再生电力频繁地进行切换。第2升压转换器20的上述功能适于电力的消耗和电力的生成频繁地切换的行驶用的马达的控制。

图3的电路的第2升压转换器20也是斩波型的电压转换器,输出电压脉动。连接于高电压端23的正极23a与负极23b之间的电容器24为了抑制第2升压转换器20的输出电压的脉动而设置。电容器24为大容量,积蓄相应的电能。由于在低电压端22的正极22a与高电压端23的正极23a之间连接有二极管27a,所以在晶体管26a截止的期间,电流不会从高电压端23向低电压端22流动。不优选在不使用燃料电池车100时电容器24仍保持着高电压,因此在使电力停止时,需要使电容器24放电。

如上所述,在使燃料电池车100的电力停止时,由于在第1升压转换器10的电容器14和第2升压转换器20的电容器24保持着高电压,所以需要放电。尤其是,由于在第1升压转换器10与燃料电池2之间不介有切断开关,所以需要使仍连接于燃料电池2的第1升压转换器10的电容器14放电。此外,虽然也需要使第1升压转换器10的电容器19放电,但是,由于在使电容器14放电时也使电容器19放电,所以在此着眼于电容器14的放电。对于第2升压转换器20的电容器29也同样如此。

图4和图5中示出电力停止处理的流程图。图4和图5的处理由控制器9执行。控制器9具备储存有程序的存储器、和执行所储存的程序的cpu。控制器9将与图4和图5的处理相当的程序从存储器加载并执行。图4和图5的处理在车辆的主开关36(参照图1)被断开时开始。

图6中示出电力停止处理的时间图。图表g1是示出空气压缩机31和燃料泵34的驱动/停止的时间图。图表g2示出了燃料电池2的电压的经时变化。图表g3示出了第1升压转换器10的电容器14的电压。图表g4示出了第2升压转换器20的电容器24的电压。到时刻t8为止,电容器24的电压与电容器14的电压相等。图表g5是示出第1变换器5的驱动/停止的时间图。图表g6是示出第1继电器4的开/闭的时间图。图表g7是示出第2继电器7的开/闭的时间图。与图4、图5一起,参照图6对停止处理进行说明。

以下,为了便于说明,将燃料电池2的电压称为fc电压,将电容器14、24的电压称为电容器电压。

当主开关36被断开后,控制器9首先使空气压缩机31停止,并且使燃料泵34停止(步骤s2)。由于燃料和氧的供给停止,所以燃料电池2停止。此外,此时,控制器9也同时进行燃料电池2的停止所需的其他处理。在图6的时间图中,在时刻t1主开关36被切换为断开,控制器9使空气压缩机31和燃料泵34停止。换言之,控制器9在时刻t1使燃料电池2停止。由于燃料电池2被停止,所以从时刻t1起燃料电池2的电压(fc电压)渐渐下降(图表g2)。

接着,控制器9使第2继电器7断开而将第2升压转换器20从蓄电池6切离(步骤s3)。在时刻t2使第2继电器7断开而将蓄电池6从第2升压转换器20切离。

接着,控制器9驱动第1变换器5,使电容器14、24的电荷流向马达32而使电容器14、24放电。以下、对放电处理进行详细说明。

在时刻t2使第1变换器5起动(图表g5)。此时,控制器9控制流于马达32的线圈的电流以使得马达32不旋转。由于燃料电池2停止、蓄电池6被切离,所以电容器14、24的电力流向马达32。即,电容器14、24被放电。在电容器14、24的放电中,控制器9以使电容器14、24的电压不低于燃料电池2的电压的方式设定电容器14、24的放电的目标电压。由于燃料电池2与第1升压转换器10电连接,所以若电容器14、24的放电的目标电压低于燃料电池2的电压,则电流会从燃料电池2向马达32流动。控制器9以不会从燃料电池2流出电流的方式决定放电的目标电压。

在放电处理中,控制器9首先将燃料电池2的电压(fc电压)与预定的电压阈值vth进行比较(步骤s4)。在电压阈值vth设定有低到即使漏电也不会对周围的部件造成深刻的影响的程度的值。电压阈值vth例如为42伏。在fc电压超过了电压阈值vth的情况下,控制器9将放电中的电容器14、24的目标电压设定为fc电压+余裕电压va(步骤s5)。余裕电压va为了吸收电压传感器的计测误差而设定。即,例如,即使在电压传感器3所计测的燃料电池的电压(fc电压)比实际的fc电压低5伏的情况下,若余裕电压va设定为10伏,则放电的目标电压也不会低于实际的fc电压。余裕电压va例如为10伏~20伏。在电压传感器的计测值准确的情况下,余裕电压va也可以为零。

在图6的时间图中,例如,时刻t2下的fc电压为电压vr。时刻t2下的目标电压成为fc电压vr+余裕电压va。

接着,控制器9驱动第1变换器5,使电容器14、24放电直到电容器电压下降至目标电压为止(步骤s6、s7)。在时刻t2以后,控制器9驱动第1变换器5,使电容器14、24放电直到电容器电压成为目标电压vr+va为止。

在步骤s7中,控制器9将目标电压与电容器电压的电压差和容许误差vb进行比较。控制器9持续驱动变换器直到电压差比容许误差vb小为止(步骤s7:“否”、s6)。换言之,控制器9使电容器14、24放电直到在容许误差vb的范围内电容器电压与目标电压一致为止。

若电压差比容许误差vb小,则控制器9再次将燃料电池2的电压(fc电压)与电压阈值vth进行比较(步骤s7:“是”、s4)。如先前所述,由于燃料电池2处于停止,所以fc电压渐渐下降。在步骤s4中,在fc电压不低于电压阈值vth的情况下,控制器9以新的fc电压重新设定目标电压(步骤s5)。并且,与先前的情况同样,控制器9驱动变换器5直到电容器电压与目标电压之差比容许误差vb小为止(步骤s6、s7)。通过步骤s4至s7的循环,电容器14、24以不会低于燃料电池2的电压的方式被渐渐放电。

在图6的时间图中,在时刻t3电容器电压(图表g3)下降至最初的目标电压(即vr+va)。之后,反复进行步骤s4至s7的循环。其结果,在时刻t4以后,电容器电压以比fc电压高出余裕电压va的状态追随于fc电压而下降(图表g3)。

此外,第1升压转换器10的电容器19随着燃料电池2的电压下降而被放电。第2升压转换器20的电容器29与电容器24一起被放电。

在步骤s4的处理中,当燃料电池2的电压(fc电压)低于电压阈值vth时,移向图5的步骤s12的处理。在步骤s12中,控制器9将电容器的目标电压设定为电压阈值vth+余裕电压va。然后,控制器9驱动变换器5,持续放电直到目标电压与电容器电压的电压差比容许误差vb小(步骤s13、s14)。此外,步骤s12-s14的处理是在燃料电池2的电压下降快、最初执行了步骤s4的处理时fc电压已经低于电压阈值vth时的对策。在最初执行步骤s4时,电容器14、24的电压与由第1升压转换器10升压后的燃料电池2的电压相等。因此,在最初执行步骤s4的处理时fc电压已经低于电压阈值vth的情况下,通过步骤s12-s14的处理,使电容器14、24一下子放电至电压阈值vth。通过步骤s12-s14的处理,在最初执行步骤s4的处理时fc电压已经低于电压阈值vth的情况下的放电时间变短。

另一方面,在至少执行了一次步骤s4至s7的循环之后执行步骤s12的处理的情况下,有时电容器电压已经接近电压阈值vth。在该情况下,步骤s14的分支判断直接成为“是”,控制器9的处理移向步骤s14。在步骤s14中做出“是”的判断时,电容器电压下降至即使漏电也不会对周围的部件造成深刻的影响的电压阈值vth。

在图6的时间图中,在时刻t5fc电压低于电压阈值vth。在时刻t5以后,电容器电压被保持为目标电压(电压阈值vth+余裕电压va)。

接着,控制器9使变换器5停止(步骤s15)。即,控制器9使放电停止。并且,控制器9使第1继电器4断开,将第1升压转换器10和燃料电池2从变换器5切离(步骤s16)。在图6的时间图中,在时刻t6使变换器5停止,在时刻t7使第1继电器4断开。

接着,控制器9将电容器24的放电的目标电压设定为0伏,再次驱动变换器5(步骤s17、s18)。通过步骤s18、s19的处理,第2升压转换器20的电容器24、29被放电。若目标电压(=0)与电容器电压的电压差比容许误差vb小,则控制器9使变换器5停止(步骤s19:“是”、s20)。这样,电力停止处理结束。在图6的时间图中,在时刻t8再次驱动变换器5,电容器24的电压下降(图表g4)。在时刻t9电容器24的电压达至零伏。另一方面,fc电压渐渐下降,在时刻t10达至零伏。

上述电力停止处理具有以下的优点。即,在上述电力停止处理中,在主开关36被切换为断开时,使向燃料电池2供给氧的空气压缩机31和向燃料电池2供给燃料的燃料泵34立即停止。因此,在主开关36被切换为断开之后泵声音立即消失。另外,在上述电力停止处理中,以不低于fc电压的方式使电容器14、24放电。因此,在电容器14、24的放电中,不会从燃料电池2强制地使电荷向电容器14、24移动。若使电荷从燃料电池2强制地放出,则存在燃料电池2的催化剂等受到损伤的危险。在实施例的电力停止处理中,不会有这样的危险。此外,电容器19与电容器14一起放电,电容器29与电容器24一起放电。

以上,详细地说明了本发明的具体例,但这些只不过是例示,不限定权利要求书。在权利要求书所记载的技术中,包括对以上例示的具体例进行各种各样的变形、变更。本说明书或附图所说明的技术要素通过单独或者各种组合来发挥技术上的有用性,不限定于申请时权利要求记载的组合。另外,本说明书或附图例示的技术能够同时实现多个目的,实现其中一个目的本身就具有技术上的有用性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1