本发明涉及一种根据权利要求1的前序部分的特征的、用于检验机动车的能电子滑动调节的制动设施的当前故障的方法。
背景技术:
机动车的能电子滑动调节的制动设施在市场上已经是长时间已知的,并且经常也被称为防抱死保护(abs)、驱动滑动(asr)或稳定性(esp)调节装置。
通常,可滑动调节的制动设施是,其能够在制动过程中使轮制动器中的制动压力匹配于在分别配属的轮上存在的滑动情况,并且因此阻止轮的抱死。车辆由此在制动过程期间保持可转向,并且此外可以通过有针对性地控制各个轮制动器的制动压力来带到稳定的行驶状态中或保持在其中。
备选地,在上述的制动设施中,制动压力可以由驾驶员通过肌肉力产生,或者驾驶员仅预设随后通过外力驱动的压力产生器调节的制动期望。随后阐述的本发明原则上可以相同地用于制动设施的两个变型方案。
主要在重型机动车中或赛车中,在对制动设施的很强的要求的情况下,例如在山路行车中并且在赛道中,在轮制动器上可能出现非常高的温度。相应地,在轮制动器中存在的制动液体的温度也得到提高。根据老化状态或制动液体的水含量,在此可能超过其沸点,从而制动液体蒸发,并且气泡可以积聚在制动回路中。气泡在压力下是可压缩的,这影响的是,在制动过程中,挤压到轮制动器中的压力介质体积非强制性地导致相应的制动压力增加。
具有气泡的问题尤其是在成对角线的或x形的制动回路分配中负面地出现,因为高的热量输入主要通过两个车桥的其中一个车桥上的功率更强的轮制动器实现。原则上,在此可以涉及车辆的前桥或后桥。必要时,在x形的制动回路分配中,因此两个制动回路被负载以不期望的气泡,而在平行的或ii制动回路分配中仅涉及其中一个车桥上的功率更强的轮制动器,并且另一车桥的更小负载的轮制动器不变地作用。
在以气泡污染的制动回路中,制动压力的升高仅能够通过将附加的压力介质运输到制动回路中实现。本发明的任务是,提出一种方法,利用该方法可以自动识别制动回路的故障。
技术实现要素:
具有制动设施的车辆(其中操纵压力产生器的范围可以由传感器检测,并且可以输送至用于评估的电子控制设备)可能适用于识别上述的故障情况,并且必要时控制导入的对应措施。根据独立权利要求1的本发明提出了相关适当的方法。
根据权利要求1的方法的优点或有利的改进方案由从属权利要求或随后的描述得到。
附图说明
本发明所基于的方法的示例随后被详细描述。根据附图来说明本发明。
附图包括总共三个图,其中:
图1示出了本发明所基于的示例性的制动设施的液压线路图;
图2示出了特征曲线,其说明了在制动设施的不同的运行状态下、通过由压力产生器挤压到制动回路中的压力介质体积实现的压力增加;并且
图3a至3c根据流程图示出了提出的方法。
具体实施方式
如上面提到的那样,图1示出了本发明所基于的能电子滑动调节的制动设施10的液压线路图。制动设施示范性地是由现有技术已知的制动设施,其中制动压力增加通过制动力实施,并且制动设施的、具有控制压力介质的部件的构造和装备因此仅在对于本发明的可实行性来说需要的范围内被阐述。在该情况下再次指出的是,本发明并不局限于这种助力制动设施,而是原则上也可以用于通过肌肉力实现制动力增加的制动设施。
图1所示的制动设施10分为液压机组12’(具有与之连接的轮制动器14)和同样连接的压力介质存储器15。总体上存在四个轮制动器14,其分别成对地通过两个存在的制动回路16和18被供应以压力介质。两个制动回路16;18在此成对角线地分配到车辆的两个桥上。也就是说,制动回路16;18的其中一个轮制动器14位于车辆的前桥上,而相同的制动回路16;18的另一轮制动器14布置在车辆的后桥上,并且在此与前桥的轮制动器14成对角线地对置。因此,第一制动回路16例如接触车辆的左前方(vl)的轮制动器14和右后方(hr)的轮制动器,并且第二制动回路18例如接触右前方(vr)的轮制动器14和左后方(hl)的轮制动器14。
制动设施10的两个制动回路16;18的分别一个制动回路连接至主制动缸24的总共两个压力介质腔20;22中的分别一个压力介质腔。主制动缸在实施例中同样安置在液压机组12中。其中每个压力介质腔20;22又与压力介质存储器15联接。主制动缸24可以借助示例性地以踏板的造型实施的操纵装置26由驾驶员操纵。踏板为此通过耦合杆28与主制动缸24的所谓的杆活塞30联接。
通过操纵踏板,驾驶员预设制动期望。制动期望在耦合杆28的操纵路径中表现出来,操纵路径由检测耦合杆28的操纵路径的第一传感器装置32获知,并且输送至制动设施10的电子控制设备34。杆活塞30的移位由杆活赛弹簧36传输至浮动活塞38,杆活塞30利用杆活塞弹簧支撑在主制动缸24的浮动活塞38上。
主制动缸24的配属于杆活塞30的压力介质腔20通过可由模拟器控制阀40控制的压力介质联接与模拟器装置42耦合,在模拟器装置中,从主制动缸24的压力腔20挤压出的压力介质在操纵踏板的情况下被缓冲。
主制动缸24的配属于杆活塞30的和配属于浮动活塞38的压力介质腔20和22分别可操控地连接至其中一个制动回路16;18。为了控制两个制动介质联接,在液压机组12上存在可电子操控的分离阀44。在制动设施10的正常状态下,压力介质腔20和22与制动回路16;18的联接中断,并且压力腔20与模拟器装置42的压力介质联接断开。
制动回路16;18中的与制动期望成比例的制动压力在该正常状态下由压力产生器50等根据传感器装置32的信号提供。压力产生器50与主制动缸24平行地与制动回路16;18接触。在所示的情况下,柱塞装置用作压力产生器50,在柱塞装置中,柱塞52由可操控的马达54通过后置的传动装置56驱动,用于线性运动。压力产生器50将压力介质从柱塞工作空间58挤压到制动回路16;18中。可电子操控的柱塞控制阀60设置用于控制制动回路16;18与压力产生器50之间的联接。
分别在柱塞控制阀60和分离阀44的下游,制动系统10具有所谓的压力调制装置。压力调制装置在每个轮制动缸14中由分别一个配属的可电子操控的压力增加阀62和这种压力减小阀64构成。压力增加阀62和压力减小阀64能够通过相应的电子操控实现使在各个轮制动器14中存在的轮制动压力匹配于分别配属的轮上的滑动情况。该轮上的可能出现的滑动由配属的轮转速传感器70、根据减小的轮转速检测到。如果轮即将抱死,那么就减小制动压力。
为了调节轮制动器14中的制动压力,制动设施10装备有另外的传感器装置。传感器装置72检测其中相应一个制动回路16;18中的制动压力,传感器装置可以设置用于检测车辆的减速或加速;如上面陈述的那样,附加的传感器装置70;74;76评估轮的旋转特性以及压力产生器50的驱动。传感器装置70-76的信号被输送至电子控制设备34,其由此计算可变的操控信号,操控信号通向压力产生器50的马达54和阐述的阀40;44;60;62;64。为此,此外在电子控制设备34中存储了制动设施10的压力体积-额定特征曲线。该特征曲线说明了在制动设施10的理想情况下、根据由压力产生器50挤压到制动回路16;18中的压力介质的压力升高的额定变化过程,并且因此形成针对与制动压力的实际上由传感器装置72的信号获知的实际变化过程的比较的适当参考。
图2根据压力体积图表示出了在根据图1的制动设施10的两个制动回路16;18的一个制动回路中的制动压力增加的变化过程。制动压力增加在此关于由压力产生器50挤压到制动回路16;18中的压力介质体积q画出。
在制动设施10的第一运行状态中,一个或多个制动回路16;18位于常规的状态中,即制动回路16;18没有通过被包围的气泡污染。随着通过压力产生器50的压力介质挤压的开始,制动回路16;18中的制动压力因此持续地升高并且随着升高的压力梯度升高。特征曲线80a作为实线示出,并且说明了压力体积额定特征曲线。
当制动回路16;18被气泡污染时,存在制动设施10的第二运行状态。在这些条件下,制动压力随着压力介质挤压的开始首先完全没有升高,或仅最小程度地升高,因为气泡存在的压缩性与这种制动压力升高相反地作用,或者阻止这种制动压力升高。只有随着越来越多地将压力介质挤压到制动回路16;18中,被包围的气泡的压缩性才逐渐减小,从而形成延迟的压力升高(虚线的特征曲线80b)。压力升高的梯度在此然而明显小于在之前阐述的特征曲线80a中的梯度,并且因此,在特定的挤压的压力介质体积中实现的实际值位于针对根据特征曲线80a的制动压力的额定值的下方。因此,制动设施10的当前故障可以通过比较两个特征曲线80a、80b或根据存在的偏差确定。特征曲线80b说明了制动设施10的示范性的压力体积实际特征曲线。
如果在确定制动设施10的当前故障之后,例如考虑到在电子控制设备34中存在的关于制动设施10的温度信息,那么位于可确定的极限值以上的温度信号可以视为针对制动回路16;18中的以高可能性被包围的气泡的指标。制动设施10的高的温度导致引导压力介质的空腔的膨胀,并且因此必须挤压更多压力介质体积,以便调节出特定的制动压力。相应地,与制动设施的温度成比例地,针对预设的制动压力待挤压到轮制动器中的压力介质的体积升高。基于该效应的并且同样存储在电子控制设备34中的温度模型因此允许推导出制动设施10或其部件的存在的温度。
图3a-c此外示出了针对本发明所基于的方法的两个备选实施变型方案。
两个检验方法基于确定和评估为了制动压力增加而挤压到制动回路16;18中的压力介质体积。该压力介质体积最终起源于驾驶员的制动期望,并且因此起源于操纵装置26的操纵路径。在能电子滑动调节的通过肌肉力操纵的制动设施10中,如上面陈述的那样,通过机械操纵与操纵装置26耦合的主制动缸24,并且在根据图1的通过助力操纵的车辆制动设施中,通过电子操控压力产生器50的驱动来实现压力介质挤压。针对实际挤压到制动回路16;18中的压力介质体积的实际值q(实际)相应地可在步骤90中从相应的压力产生器50的被传感器装置76检测的操纵信号获知。
在确定挤压到制动回路16;18中的压力介质体积q(实际)后,在借助存储的压力体积额定特征曲线的情况下,在随后的步骤92中获知针对在制动回路16;18中出现的制动压力的额定值p(额定)。随后,在步骤94中,针对制动压力的额定值p(额定)与由传感器装置72实际测量的针对制动压力的实际值p(实际)比较。如果该比较得到针对制动压力的实际值p(实际)比通过电子控制设备34可确定的针对制动压力的获知的额定值的最小极限值p(额定-最小)小,那么在步骤96中推断出制动回路16;18中的当前故障。
相对该方法方式备选地,根据图3b,在针对制动压力的额定值p(额定)与针对制动压力的测量的实际值p(实际)至少尽可能一致的情况下,可以利用步骤100从存储在电子控制设备34中的压力体积额定特征曲线80a确定的是:针对由压力产生器50待挤压到制动回路16;18中的压力介质体积的配属于针对制动压力的当前的实际值p(实际)的额定值q(额定)。在随后的步骤102中,针对压力介质体积的被获知的额定值q(额定)与针对被挤压的压力介质体积的从压力产生器50的操纵信号可获知的实际值q(实际)比较。如果该比较得到的是,针对被挤压的压力介质体积的实际值q(实际)大于可由电子控制设备34确定的上极限值——针对为了产生存在的制动压力p(实际)而待挤压到制动回路(16;18)中的压力介质体积q(额定),那么在步骤104中同样推断出制动回路16;18中的当前故障。
在确定故障(步骤96或步骤104)后,根据图3c考虑到关于制动设施的温度的、在电子控制设备中存在的信息(步骤110)。如果查询112得到该温度超过可确定的温度极限值,那么在步骤114中推断出制动回路16;18中以高可能性存在的气泡。
在可能存在的气泡中,在步骤116中实现车辆的其中相应一个轴的轮制动器14与其相应的制动回路16;18脱开。在此涉及两个桥中布置有车辆的取决于设计而功率更强的轮制动器14的那个桥。具体地,为了脱开轮制动器14,分别配属的压力增加阀62由电子控制设备34操控,从而压力增加阀62占据其关闭位置,并且因此从此中断轮制动器14与制动回路16;18的压力介质联接。相应另一桥的功率不太强的轮制动器14保持不变地与制动回路16;18接触,并且此外由压力产生器50供应以压力介质。在此,通过电子控制设备34操控该压力产生器50的马达54(措施118),从而相对常规的压力介质运输将更大的压力介质体积运输至接触的轮制动器14。目标是,将与制动回路16;18接触的轮制动器14中的制动压力尽可能快速提高,直到达到轮的抱死压力水平。
如果达到抱死压力水平,那么在步骤120中,借助轮制动器14的压力增加阀62和压力减小阀64,以由现有技术已知的方式和方法执行滑动调节。备选地可能的是,轮制动器14中的滑动调节仅通过操控压力增加阀62执行,即在压力减小阀64没有参与的情况下执行。后一种变型方案的优点是更高的压力增加动力,因为压力产生器50在此仅从压力介质存储器16抽吸压力介质。
如果接下来随后的检验122得到:在其中一个桥上已经达到抱死压力水平,那么压力产生器50的运输体积可以提供给至此脱开的桥的轮制动器14,直到最终轮制动器14在两个桥上达到其抱死压力水平。为此,电子控制设备34控制迄今为止脱开的轮制动器14的压力增加阀62又返回到其通行位置。
一旦不再存在制动压力要求,例如当驾驶员撤销对操纵装置26的操纵时,那么结束所阐述的方法。
显然,在所描述的实施例上的改变或补充是可能的,而不会偏离本发明所陈述的基本构思。