车辆电源系统的制作方法

文档序号:22190514发布日期:2020-09-11 22:02阅读:159来源:国知局
车辆电源系统的制作方法

本发明涉及车辆电源系统,尤其涉及搭载于车辆的车辆电源系统。



背景技术:

在日本特开2016-111754号公报(专利文献1)中记载有一种汽车。该汽车在检测到车辆的碰撞且电动机正在旋转时,执行使逆变器的多个晶体管中的全部上臂或全部下臂导通的三相导通控制。进而,通过执行该三相导通控制来使电动机的旋转停止,在电动机的旋转停止后,使d轴电流流过电动机,由此执行使储存于电源系统的电容器中的电荷放电的放电控制。另外,存在由于执行三相导通控制而导致用于驱动电动机的逆变器过热的情况,因此在专利文献1记载的汽车中,若逆变器的温度为阈值以上,则中止三相导通控制,抑制了放电控制被中止。

现有技术文献

专利文献

专利文献1:日本特开2016-111754号公报

发明所要解决的技术问题

然而,在使搭载于车辆的电容器(condenser)大容量化的情况下,如专利文献1记载的发明那样仅通过使d轴电流流过电动机,有无法进行充分的放电的可能性。另外,在更换电容器时,需要使所储存的电荷放电,为了在维护时迅速地进行电容器的更换,需要使储存于电容器的电荷迅速地放电。



技术实现要素:

因此,本发明的目的在于,提供一种如下的车辆电源系统:在车辆碰撞时等,能够使储存于电容器的电荷可靠且迅速地放电。

用于解决技术问题的手段

为了解决上述的课题,本发明的搭载于车辆的车辆电源系统具有:电池,该电池的额定电压低于规定电压;电容器,该电容器的额定电压高于规定电压;电容器放电器,该电容器放电器用于使储存于该电容器的电荷放电;以及控制器,该控制器控制该电容器放电器,在车辆碰撞时或者更换电容器时,控制器控制电容器放电器,以使储存于电容器的电荷放电,并使放电的电荷充电到电池。

根据这样构成的本发明,在车辆碰撞时,电容器放电器使储存于电容器的电荷放电,放电的电荷被充电到电池,因此能够使储存于电容器的电荷尽快且可靠地放电。另外,在更换电容器时,能够使储存于电容器的电荷迅速地放电,使电容器的端子间电压快速地下降,因此能够迅速地进行电容器的更换作业。此外,由于电池的额定电压低于规定电压,因此即使在被充入了从电容器放电的电荷的情况下,电压也被抑制在限制电压以下,没有高电压引起的危险。

并且,根据如上述那样构成的本发明,在更换电容器时,电容器放电器也使储存于电容器的电荷放电,放电的电荷被充电到电池。因此,能够使储存于应更换的电容器的电荷迅速地放电,能够安全地更换电容器。

在本发明中,优选的是,电容器放电器具备dc-dc转换器,在车辆碰撞时或者更换电容器时,控制器控制电容器放电器,以使从电容器放电的电荷被dc-dc转换器降压,并充电到电池。

根据这样构成的本发明,在车辆碰撞时或者更换电容器时,电容器的电压被dc-dc转换器降压,并充电到电池。因此,即使在电容器的端子间电压与电池的端子间电压大不相同的情况下,也能够将储存于电容器的电荷充电到电池并抑制电池的劣化。

在本发明中,优选地,电容器构成为能够储存的电荷量比能够储存于电池的电荷量少。

根据这样构成的本发明,能够储存于电容器的电荷量比能够储存于电池的电荷量少,因此能够将储存于电容器的电荷在短时间内向电池放电。另外,由于能够储存于电池的电荷量多,因此即使在被充入了从电容器放电的电荷的情况下,电池的端子间电压也几乎不会上升,能够使电池和电容器可靠地成为低电压。

在本发明中,优选的是,控制器控制电容器放电器,以使在从车辆发生碰撞或者接收到表示电池的更换可能性的信号时起的规定时间以内,电容器的电压下降到规定电压以下。

根据这样构成的本发明,在从车辆发生碰撞起规定时间以内,电容器放电器使电容器的电压下降到规定电压以下,因此能够更可靠地确保碰撞时的安全性。

并且,根据如上述那样构成的本发明,在更换电容器时,电容器放电器也在规定时间以内使电容器的电压下降到规定电压以下。因此,在更换电容器时,电容器的电压迅速下降,因此能够安全且迅速地更换电容器。

在本发明中,优选的是,当电容器的电压下降到规定电压以下时,控制器控制电容器放电器,以切断电池与电容器的电连接。

在本发明中,电池的额定电压被设定为低于规定电压,当电容器的电压下降到规定电压以下时,电池与电容器的电连接被电容器放电器切断。因此,即使在电池和电容器串联连接的情况下,在切断连接后,也不存在具有超过规定电压的电压的高电压部件,能够确保充分的触电保护性能。

发明的效果

根据本发明的车辆电源系统,在车辆碰撞时等,能够使储存于电容器的电荷可靠且迅速地放电。

附图说明

图1是搭载有基于本发明的第一实施方式的车辆电源系统的车辆的布局图。

图2是基于本发明的第一实施方式的车辆电源系统的框图,是概略地表示通过外部电源进行充电时的电流的流动的图。

图3是基于本发明的第一实施方式的车辆电源系统的框图,是概略地表示驱动主驱动电动机以及副驱动电动机时的电流的流动的图。

图4是基于本发明的第一实施方式的车辆电源系统的框图,是概略地表示车辆碰撞时的使储存于电容器的电荷放电时的电流的流动的图。

图5是表示基于本发明的第一实施方式的车辆电源系统的电路的图。

图6是表示由基于本发明的第一实施方式的车辆电源系统从外部电源充电时的作用的时序图。

图7是表示由基于本发明的第一实施方式的车辆电源系统从外部电源充电时的电路状态的图。

图8是表示由基于本发明的第一实施方式的车辆电源系统的对电容器充电时的作用的时序图。

图9是表示由基于本发明的第一实施方式的车辆电源系统的对电容器充电时的电路状态的图。

图10是表示在基于本发明的第一实施方式的车辆电源系统中当碰撞时将电容器的电荷充电到电池的作用的时序图。

图11是表示在基于本发明的第一实施方式的车辆电源系统中当碰撞时将电容器的电荷充电到电池的情况下的电路状态的图。

图12是表示在基于本发明的第一实施方式的车辆电源系统中使电容器的电荷放电时的充电控制器所进行的控制的流程图。

图13是表示在基于本发明的第二实施方式的车辆电源系统中当更换电容器时使电荷放电的情况下的充电控制器所进行的控制的流程图。

符号说明

1车辆

2a后轮

2b前轮

10车辆电源系统

12发动机

14动力传递机构

14a传动轴

14b变速器

16主驱动电动机

16a逆变器

17外部电源

17a电缆

18电池

19充电装置(电容器放电器)

19a充电控制器(控制器)

19b充电用电容器

20副驱动电动机

20a逆变器

22电容器

23供电口(供电设备)

24控制装置

24a前后加速度传感器

24b横向加速度传感器

26dc-dc转换器

28车载设备

具体实施方式

接着,参照附图来对本发明的优选的实施方式进行说明。

图1是搭载有基于本发明的第一实施方式的车辆电源系统的车辆的布局图。

如图1所示,搭载有基于本发明的第一实施方式的车辆电源系统10的车辆1是所谓的fr(frontengine,reardrive:前置发动机,后轮驱动)车,该车在与驾驶座相比位于前方的车辆的前部搭载有作为内燃机的发动机12,驱动作为主驱动轮的左右一对后轮2a。另外,如后所述,后轮2a还由主驱动电动机驱动,作为副驱动轮的左右一对前轮2b由作为轮毂电动机的副驱动电动机驱动。

即,作为车辆驱动装置,车辆1搭载有:驱动后轮2a的发动机12、向后轮2a传递驱动力的动力传递机构14、驱动后轮2a的主驱动电动机16、驱动前轮2b的副驱动电动机20以及控制装置24。另外,在车辆1搭载有逆变器16a和逆变器20a,该逆变器16a将直流电压转换为交流电压来驱动主驱动电动机16,该逆变器20a将直流电压转换为交流电压来驱动副驱动电动机20。

另外,搭载于车辆1的基于本发明的第一实施方式的车辆电源系统10具有电池18、电容器22、充电装置19以及供电口23,其中,该充电装置19用于接收来自外部电源17的电力并对电池18和电容器22进行充电。关于本实施方式的车辆电源系统10的具体结构见后述。

发动机12是用于产生针对作为车辆1的主驱动轮的后轮2a的驱动力的内燃机。在本实施方式中,采用直列四缸发动机作为发动机12,配置于车辆1的前部的发动机12经由动力传递机构14驱动后轮2a。

动力传递机构14构成为将发动机12以及主驱动电动机16所产生的驱动力传递至作为主驱动轮的后轮2a。如图1所示,动力传递机构14具备传动轴14a以及作为变速机的变速器14b,其中,该传动轴14a是与发动机12以及主驱动电动机16连接的动力传递轴。

主驱动电动机16是用于产生针对主驱动轮的驱动力的电动机,主驱动电动机16设置在车辆1的车身上且与发动机12相邻地配置在发动机12的后侧。另外,与主驱动电动机16相邻地配置有逆变器16a,通过该逆变器16a将电池18的直流电压转换为交流电压并向主驱动电动机16供给。并且,如图1所示,主驱动电动机16与发动机12串联连接,主驱动电动机16产生的驱动力也经由动力传递机构14传递至后轮2a。另外,在本实施方式中,作为主驱动电动机16,采用由48v驱动的25kw的永磁电动机(永磁同步电动机)。

副驱动电动机20设置于前轮2b的各轮以产生针对作为副驱动轮的前轮2b的驱动力。另外,副驱动电动机20是轮毂电动机且分别收容于前轮2b各轮的轮内。另外,电容器22的直流电压通过配置于通道部15内的逆变器20a而被转换为交流电压,并被供给至各副驱动电动机20。并且,在本实施方式中,在副驱动电动机20未设置作为减速机构的减速器,副驱动电动机20的驱动力直接传递至前轮2b,车轮被直接驱动。另外,在本实施方式中,作为各副驱动电动机20,分别采用17kw的感应电动机。

电池18是主要用于储存使主驱动电动机16工作的电能的蓄电器。并且,在本实施方式中,作为电池18,使用48v、3.5kwh的锂离子电池(lib)。

电容器22被设置成能够储存由副驱动电动机20再生的电力。电容器22配置于与车辆1后部的插入式的充电装置19大致对称的位置,并且电容器22向设置于车辆1的前轮2b各轮的副驱动电动机20供给电力。主要由储存于电容器22的电力驱动的副驱动电动机20由比主驱动电动机16高的电压驱动。

充电装置19与电池18以及电容器22电连接,并且充电装置19构成为将从充电站等外部电源17经由供电口23供给的电力向它们进行充电。一般而言,充电站等外部电源17构成为以规定的下限电压(例如50v)以上的电压进行充电,本实施方式的车辆电源系统10与该下限电压对应。

供电口23是设置于车辆1的后部侧面的连接器且与充电装置19电连接。供电口23的连接器构成为能够与从充电站等外部电源17延伸的电缆17a的插头连接,电力经由供电口23而被供给到充电装置19。这样,本实施方式的车辆电源系统10构成为,通过将供给直流电力的外部电源17经由电缆17a与供电口23连接,从而能够对电池18以及电容器22进行充电。

控制装置24构成为被输入前后加速度传感器24a、横向加速度传感器24b等各种传感器的检测信号。另外,控制装置24构成为基于所输入的来自各传感器的检测信号来控制发动机12、主驱动电动机16以及副驱动电动机20。具体而言,控制装置24能够由微型处理器、存储器、接口电路、以及使它们工作的程序(以上未图示)等构成。

此外,控制装置24构成为:基于由前后加速度传感器24a以及横向加速度传感器24b检测出的加速度信号来判定车辆1的碰撞,在车辆1发生了碰撞的情况下,输出用于展开气囊(未图示)的控制信号。另外,如后所述,来自控制装置24的气囊展开信号也被发送到充电装置19。

接着,参照图2至图4来概略地说明基于本发明的第一实施方式的车辆电源系统10的结构及作用。图2是基于本发明的第一实施方式的车辆电源系统10的框图,是概略地表示通过外部电源17进行充电时的电流的流动的图。图3是基于本发明的第一实施方式的车辆电源系统10的框图,是概略地表示驱动主驱动电动机16以及副驱动电动机20时的电流的流动的图。图4是基于本发明的第一实施方式的车辆电源系统10的框图,是概略地表示车辆1碰撞时的使储存于电容器22的电荷放电时的电流的流动的图。

首先,如图2所示,在本实施方式的车辆电源系统10中,电池18和电容器22串联连接。即,在本实施方式中,将电池18的正极端子与电容器22的负极端子连接,由此它们以串联方式电连接。另外,电池18的负极端子与车辆1的车身接地连接。在此,在本实施方式中,电池18的额定电压被设定为比外部电源17的下限电压(50v)低的48v,电容器22的额定电压被设定为比外部电源17的下限电压高的72v。

这里,在汽车评价(jncap:japanesenewcarassessmentprogramme,日本新车评价规程)中规定了“电动汽车等的碰撞时的触电保护性能试验”。该触电保护性能试验是以如下为目的而规定的:在电动汽车以及电气式混合动力汽车万一发生了碰撞事故时,乘员不会因高电压而触电。另外,触电保护性能试验中,电动机的工作电压为交流30v以及直流60v以上的汽车成为对象。在作为该“电动汽车等的碰撞时的触电保护性能试验”的评价项目之一的“残余电压测量”中,要求碰撞后5秒至60秒后的高电压部件的残余电压为ac30v以下或dc60v以下。

电池18的额定电压48v比在jncap中作为高电压而被限制的规定电压60v(以下称为限制电压)低,没有作为高电压的危险性。另一方面,电容器22的额定电压72v高于限制电压60v,根据jncap作为高电压部件而成为限制的对象。此外,在本说明书中,电池18的额定电压是指一般的条件下的工作电压的最大值,电容器22的额定电压是指施加到电容器22的最大的电压。另外,将电池在一般的条件下进行了放电时的平均工作电压称为电池的标称电压。并且,电池18的额定电压被设定为比电容器22的额定电压低,但能够储存于电池18的电荷量(电量:库仑)构成为比能够储存于电容器22的电荷量多。

这样,在本实施方式中,电池18的额定电压被设定为比限制电压低的电压,因此电池18单体不会作为高电压部件而成为限制的对象。另一方面,在电池18与电容器22串联连接的状态下,电池18的负极端子与电容器22的正极端子之间的电压超过限制电压,因此作为高电压部件而成为限制的对象。

另外,与电池18串联连接的电容器22的电压(电池18的负极与电容器22的正极之间的电压)为能够通过外部电源17进行充电的下限电压以上,因此能够从外部电源17对电池18和电容器22直接进行充电。因此,如图2所示,在通过外部电源17进行充电时,来自外部电源17的直流电流向电容器22、电池18流动,电容器22以及电池18被充电。另外,充电装置19分别与电容器22和电池18连接,构成为控制对它们的充电。关于充电装置19的具体结构及作用见后述。

此外,充电装置19可以内置有dc-dc转换器,以能够对储存于电容器22的电荷进行降压而对电池18进行充电,或者对储存于电池18的电荷进行升压而对电容器22进行充电。这样,通过具备与电池18以及电容器22连接的dc-dc转换器,能够在电池18与电容器22之间进行电荷的授受。由此,在车辆1碰撞时,能够在抑制电池18劣化的情况下对储存于电容器22的电荷进行降压并迅速地充电到电池18,能够使电容器22的端子间电压下降。

接着,如图3所示,在驱动主驱动电动机16及副驱动电动机20的情况下,分别以不同的路径供给电力。首先,主驱动电动机16以48v左右的比较低的电压被驱动,因此从电池18直接向主驱动电动机16用的逆变器16a供给电力。即,在逆变器16a连接有电池18的正极端子和负极端子,逆变器16a被施加电池18的直流电压。另一方面,副驱动电动机20以120v左右的比较高的电压被驱动,因此从电池18及电容器22向副驱动电动机20用的逆变器20a供给电力。即,在逆变器20a连接有电容器22的正极端子和电池18的负极端子,逆变器20a被施加将电池18和电容器22的电压相加后得到的电压。另外,在电容器22的电荷被放电而电容器22的端子间电压下降的情况下,储存于电池18的电荷通过充电装置19而被充电到电容器22。由此,电容器22的端子间电压上升,确保了副驱动电动机20的驱动所需的电压。另一方面,通过dc-dc转换器26来对电池18的输出电压进行降压而对搭载于车辆1的12v系的车载设备28供给电力。

并且,如图4所示,在车辆1碰撞时,通过充电装置19来使储存于电容器22的电荷放电,并将被放电的电荷充电到电池18,使电容器22的端子间电压下降。因此,在本实施方式中,充电装置19作为电容器放电器发挥作用,该电容器放电器使储存于电容器22的电荷放电,并将被放电的电荷充电到电池18。

并且,在车辆1的制动时,车辆1的动能由主驱动电动机16再生,生成电力。来自主驱动电动机16的输出电压施加在电池18的正极端子与负极端子之间,对电池18进行充电。另外,在车辆1的制动时,也通过副驱动电动机20进行再生,生成电力。来自副驱动电动机20的输出电压施加在电容器22的正极端子与电池18的负极端子之间,对电池18和电容器22进行充电。在此,在由副驱动电动机20再生的电力较大而电容器22的端子间电压已上升到规定值以上的情况下,也如图4所示储存于电容器22的电荷被放电,并被充电到电池18。

接下来,参照图5至图11来对基于本发明的第一实施方式的车辆电源系统10的详细结构及作用进行说明。

图5是表示本实施方式的车辆电源系统10的电路的图。图6是表示基于本实施方式的车辆电源系统10从外部电源充电时的作用的时序图。图7是表示基于本实施方式的车辆电源系统10从外部电源充电时的电路状态的图。图8是表示基于本实施方式的车辆电源系统10的对电容器充电时的作用的时序图。图9是表示基于本实施方式的车辆电源系统10的对电容器充电时的电路状态的图。图10是表示在本实施方式的车辆电源系统10中,当碰撞时将电容器的电荷充电到电池的作用的时序图。图11是表示在本实施方式的车辆电源系统10中,当碰撞时将电容器的电荷充电到电池时的电路状态的图。

如图5所示,本实施方式的车辆电源系统10经由供电口23与外部电源17的电缆17a连接,构成为能够通过外部电源17进行充电。另外,在车辆电源系统10中具备电池18、电容器22以及充电装置19,构成为来自外部电源17的电力被充电到电池18和电容器22。并且,本实施方式的车辆电源系统10中,在车辆碰撞时,充电装置19使电容器22的电荷放电,并将被放电的电荷充电到电池18,因此充电装置19作为电容器放电器而发挥作用。

另外,如上所述,电池18的正极端子与电容器22的负极端子连接,电池18与电容器22以串联方式电连接。并且,在电池18的正极端子连接有开关swbatt,在电容器22的正极端子连接有开关swcap,构成为能够切换电池18以及电容器22的连接、非连接。

充电装置19与串联连接的电池18和电容器22并联连接。另外,在充电装置19内置有串联连接的四个开关,开关sw1、sw2、sw3、sw4按该顺序连接。开关sw1的一端与电容器22的正极端子连接,另一方面,开关sw4的一端与电池18的负极端子连接。另外,开关sw2与sw3的连接点连接于电池18与电容器22的连接点。这些开关sw1~sw4以及分别设置于电池18和电容器22的swbatt、swcap由内置于充电装置19的充电控制器19a控制开闭。具体而言,作为控制器的充电控制器19a能够由微型处理器、存储器、接口电路、以及使它们工作的程序(以上未图示)等构成。并且,在开关sw1与sw2的连接点和开关sw3与sw4的连接点之间连接有充电用电容器19b。此外,在本实施方式中,作为各开关而采用了半导体开关,但也能够将基于机械触点的继电器作为开关来使用。

接着,参照图6以及图7来对通过外部电源17进行的向电池18和电容器22的充电进行说明。此外,图6以及图7示出了电池18的端子间电压与电容器22的端子间电压的合计为能够通过外部电源17进行充电的下限电压以上的情况。

图6是表示在通过外部电源17来向电池18以及电容器22充电时的车辆电源系统10的作用的时序图。图6从上段开始依次示出了从外部电源17输入的电压vin、开关swbatt和swcap的开闭状态、开关sw1和sw3的开闭状态、开关sw2和sw4的开闭状态。紧接于此,在图6中示出了电容器22的端子间电压vcap(电容器22的正极端子与负极端子之间的电压)、流经电容器22的电流icap、电池18的端子间电压vbatt、流经电池18的电流ibatt、充电用电容器19b的端子间电压vc、流经充电用电容器19b的电流ic。

图7是表示在通过外部电源17进行向电池18以及电容器22充电时的各开关的状态以及电流的流动的图。在通过外部电源17进行充电的过程中,各开关依次被设定为图7的上段所示的阶段(1)、中段所示的阶段(2)、下段所示的阶段(3)的状态。

首先,在图6的时刻t1处,当通过外部电源17进行的充电开始时,充电控制器19a使开关swbatt和swcap接通(成为闭合状态),使开关sw1~sw4断开(成为断开状态)。由此,车辆电源系统10成为图7的上段所示的阶段(1)的状态。在该状态下,电池18及电容器22与外部电源17连接,另一方面,充电装置19与外部电源17断开。由此,从外部电源17供给的电流流入到电容器22和电池18(电流icap、ibatt>0),对它们进行充电。伴随于此,电容器22的端子间电压vcap和电池18的端子间电压vbatt上升。在此,由于能够储存于电容器22的电荷量比能够储存于电池18的电荷量少,因此电容器22的端子间电压vcap比电池18的端子间电压vbatt更急剧地上升。因此,在时刻t2处,电容器22的端子间电压vcap上升到接近电容器22的额定电压。

当电容器22的端子间电压vcap上升时,在时刻t2处,充电控制器19a使开关sw1和sw3接通(开关swbatt和swcap保持接通,开关sw2和sw4保持断开)。由此,车辆电源系统10成为图7的中段所示的阶段(2)的状态。在该状态下,来自外部电源17的电流流入到充电装置19的充电用电容器19b,并且储存于电容器22的电荷被放电(电流icap<0),流入(电流ic>0)到充电用电容器19b。由此,充电用电容器19b的端子间电压vc上升,另一方面,电容器22的端子间电压vcap下降。由此,电容器22成为能够再次充电的状态。此外,在为电容器22的电压下降了的时刻t3的状态下,将电池18的端子间电压vbatt与电容器22的端子间电压vcap合计而得到的电压也被维持为能够通过外部电源17进行充电的下限电压以上。

当充电用电容器19b的端子间电压vc上升到规定电压时,在时刻t3处,充电控制器19a使开关sw1和sw3断开,使开关sw2和sw4接通(开关swbatt和swcap保持接通)。由此,车辆电源系统10成为图7的下段所示的阶段(3)的状态。在该状态下,来自外部电源17的电流流入到电容器22以及电池18,它们被充电,并且储存于充电用电容器19b的电荷也通过开关sw2、swbatt而被充电到电池18。由此,电容器22的端子间电压vcap和电池18的端子间电压vbatt上升,并且充电用电容器19b的端子间电压vc下降。

当电容器22的端子间电压vcap上升到接近额定电压时,在时刻t4处,充电控制器19a切换各开关,再次使车辆电源系统10成为图7的中段所示的阶段(2)的状态。在该状态下,电容器22的端子间电压vcap下降,并且充电用电容器19b的端子间电压vc上升(电池18的端子间电压vbatt大致恒定)。接着,在时刻t5处,充电控制器19a将各开关切换为图7的下段所示的阶段(3)的状态,使电容器22和电池18的端子间电压上升,使充电用电容器19b的端子间电压vc下降。以后,充电控制器19a交替地切换阶段(2)的状态和阶段(3)的状态,使电池18的端子间电压vbatt上升(对电池18进行充电)。当电池18的端子间电压vbatt上升到充电结束阈值、电容器22的端子间电压vcap上升到接近额定电压时,充电控制器19a结束向电容器22和电池18的充电。

接着,参照图8和图9来说明利用储存于电池18的电荷来向电容器22进行的充电。此外,图8以及图9所示的作用在电池18的端子间电压与电容器22的端子间电压的合计下降到小于能够通过外部电源17进行充电的下限电压的情况下执行,以使得能够通过外部电源17进行充电。即,当电池18与电容器22的端子间电压的合计下降到小于下限电压时,不能通过外部电源17进行充电,因此对电容器22进行充电而使端子间电压上升,从而能够通过外部电源17进行充电。另外,在车辆1的行驶中等储存于电容器22的电荷量下降了的情况下,图8以及图9所示的作用也以使电容器22的端子间电压上升为目的而被执行。即,当在行驶中储存于电容器22的电荷量减少而端子间电压下降时,无法得到用于驱动副驱动电动机20所需的电压,因此通过对电容器22进行充电来恢复所需的电压。

图8是表示在利用电池18来向电容器22充电时的车辆电源系统10的作用的时序图。图8从上段开始依次示出了电池18与电容器22的端子间电压的合计vin、开关swbatt和swcap的开闭状态、开关sw1和sw3的开闭状态、开关sw2和sw4的开闭状态。紧接于此,在图8中示出了电容器22的端子间电压vcap、流经电容器22的电流icap、电池18的端子间电压vbatt、流经电池18的电流ibatt、充电用电容器19b的端子间电压vc、流经充电用电容器19b的电流ic。

图9是表示利用电池18的电荷来向电容器22充电时的各开关的状态以及电流的流动的图。在向电容器22充电的过程中,各开关依次被设定为图9的上段所示的阶段(11)、中段所示的阶段(12)、下段所示的阶段(13)的状态。

首先,在图8的时刻t11处,电池18与电容器22的端子间电压的合计vin小于下限电压,因此为了使该合计vin上升而执行向电容器22的充电。为了开始向电容器22的充电,充电控制器19a在时刻t11处使开关swbatt和swcap接通(成为闭合状态)。并且,充电控制器19a在时刻t12处使开关sw2和sw4接通(开关sw1和sw3保持断开(断开状态))。由此,车辆电源系统10成为图9的上段所示的阶段(11)的状态。在该状态下,从电池18输出的电流(ibatt<0)通过开关swbatt和开关sw2而流入到充电装置19的充电用电容器19b(ic>0)。由此,充电用电容器19b的端子间电压vc上升。另一方面,电池18的端子间电压vbatt下降,但由于在电池18中储存了充分多的电荷,因此端子间电压vbatt的下降量很少。

当充电用电容器19b的端子间电压vc上升到规定电压时,在时刻t13处,充电控制器19a使开关sw1和sw3接通,使开关sw2和sw4断开(开关swbatt和swcap保持接通)。由此,车辆电源系统10成为图9的中段所示的阶段(12)的状态。在该状态下,从充电装置19的充电用电容器19b放电的电流(电流ic<0)流入到电容器22(电流icap>0)。由此,充电用电容器19b的端子间电压vc下降,另一方面,电容器22的端子间电压vcap上升(电池18的端子间电压vbatt不变化)。其结果是,电容器22与电池18的端子间电压的合计(vin)上升。

当充电用电容器19b的端子间电压vc下降到规定电压时,在时刻t14处,充电控制器19a使开关sw1和sw3断开,使开关sw2和sw4接通(开关swbatt和swcap保持接通)。由此,车辆电源系统10返回到图9的上段所示的阶段(11)的状态。在该状态下,如上所述,来自电池18的电流流入到充电用电容器19b,进而被充电到充电用电容器19b。由此,充电用电容器19b的端子间电压vc上升,并且电池18的端子间电压vbatt略微下降。

当充电用电容器19b的端子间电压vc下降至规定的电压时,在时刻t15处,充电控制器19a切换各开关,再次使车辆电源系统10成为图9的中段所示的阶段(12)的状态。在该状态下,充电用电容器19b的端子间电压vc下降,并且电容器22的端子间电压vcap上升(电池18的端子间电压vbatt大致恒定)。其结果是,电容器22与电池18的端子间电压的合计(vin)进一步上升。以后,充电控制器19a交替地切换阶段(11)的状态和阶段(12)的状态,使电容器22的端子间电压vcap、以及电容器22与电池18的端子间电压的合计(vin)上升(对电容器22进行充电)。即,通过交替地重复图9的阶段(11)和阶段(12),储存于电池18的电荷被放电并被充电到电容器22,电容器22的端子间电压vcap上升。另一方面,电池18的电荷被放电,但由于电池18的容量充分大,因此电池18的端子间电压vbatt的下降很少。因此,通过将电池18的电荷充电到电容器22,能够使电容器22与电池18的端子间电压的合计(vin)上升。

当在图8的时刻t18处电容器22与电池18的端子间电压的合计达到外部充电开始阈值的电压时,充电控制器19a在时刻t19处开始从外部电源17进行的充电。此外,外部充电开始阈值被设定为能够通过外部电源17进行充电的下限电压以上。即,在时刻t19处,充电控制器19a使开关swbatt和swcap接通,同时使开关sw1~sw4断开,使车辆电源系统10成为图9的下段所示的阶段(13)的状态。由此,从外部电源17供给的电流流入到电容器22及电池18,电容器22及电池18的端子间电压上升。此外,在时刻t19之后,当电容器22的端子间电压vcap达到了规定电压时,转移到通过图6以及图7而已说明的动作,执行向电池18的充电。

通过上述的图8和图9说明的动作是以使电容器22与电池18的端子间电压的合计上升到能够从外部电源17进行充电的下限电压以上的电压为目的而执行的。然而,基于图8和图9的动作在如下情况下也被执行:以对副驱动电动机20施加所需的电压为目的而使电容器22与电池18的端子间电压的合计上升。在这种情况下,基于图8和图9的动作在电容器22与电池18的端子间电压的合计高于下限电压的状态下也被执行。

接着,参照图10以及图11来对在车辆1碰撞时的电容器22的电荷的放电进行说明。即,使储存于电容器22的电荷放电并对电池18进行充电,由此使电容器22的端子间电压下降而成为规定电压以下,防止触电。通过将该规定电压设定为由jncap规定的限制电压(60v)以下,能够也满足基于jncap的要求。另外,能够基于各国的高电压限制来将各种电压设定为规定电压。此外,图10以及图11所示的作用在如下情况下也被执行:通过将由副驱动电动机20再生的电力充电到电容器22,从而电容器22的端子间电压上升到了接近额定电压的情况。即,当电容器22的端子间电压上升到额定电压以上时,电容器22有可能会劣化。因此,将已被充电到电容器22的电荷向电池18充电,有效地活用再生的电力。

图10是表示在碰撞时使电容器22的电荷放电并向电池18进行充电的车辆电源系统10的作用的时序图。图10从上段开始依次示出了电池18与电容器22的端子间电压的合计vin、开关swbatt和swcap的开闭状态、开关sw1和sw3的开闭状态、开关sw2和sw4的开闭状态。紧接于此,在图10中示出了电容器22的端子间电压vcap、流经电容器22的电流icap、电池18的端子间电压vbatt、流经电池18的电流ibatt、充电用电容器19b的端子间电压vc、流经充电用电容器19b的电流ic。

图11是表示在通过电容器22的电荷的放电来向电池18充电时的各开关的状态以及电流的流动的图。在从电容器22放电的过程中,各开关依次被设定为图11的上段所示的阶段(21)、中段所示的阶段(22)、下段所示的阶段(23)的状态。

如上所述,控制装置24(图1)基于前后加速度传感器24a以及横向加速度传感器24b的检测信号来判定车辆的碰撞。即,当由前后加速度传感器24a或者横向加速度传感器24b检测出的加速度超过规定的阈值时,控制装置24判定为车辆1发生了碰撞。当判定出车辆1的碰撞时,控制装置24向搭载于车辆1的气囊(未图示)发送展开信号,使气囊展开。该气囊的展开信号还被发送到充电装置19的充电控制器19a,作为控制器的充电控制器19a控制作为电容器放电器而发挥作用的充电装置19,来使电容器22的电荷放电。

首先,当在图10的时刻t21处充电控制器19a接收到气囊的展开信号时,由于电容器22的端子间电压vcap高于规定电压,因此需要使电容器22的端子间电压vcap下降。因此,为了使电容器22的电压下降到规定电压以下,使储存于电容器22的电荷放电并向电池18充电,使电容器22的端子间电压vcap下降。充电控制器19a在时刻t22处使开关sw1和sw3接通(开关swbatt和swcap保持接通(闭合状态),开关sw2和sw4保持断开(断开状态))。由此,车辆电源系统10成为图11的上段所示的阶段(21)的状态。在该状态下,从电容器22放电的电流(icap<0)通过开关swcap和开关sw1而流入(ic>0)到充电装置19的充电用电容器19b。由此,充电用电容器19b的端子间电压vc上升,电容器22的端子间电压vcap下降。

当充电用电容器19b的端子间电压vc上升到规定电压时,在时刻t23处,充电控制器19a使开关sw2和sw4接通,使开关sw1和sw3断开(开关swbatt和swcap保持接通)。由此,车辆电源系统10成为图11的中段所示的阶段(22)的状态。在该状态下,从充电装置19的充电用电容器19b放电的电流(电流ic<0)流入到电池18(电流ibatt>0)。由此,充电用电容器19b的端子间电压vc下降,另一方面,电池18的端子间电压vbatt略微上升(电容器22的端子间电压vcap不变化)。

当充电用电容器19b的端子间电压vc下降到规定电压时,在时刻t24处,充电控制器19a使开关sw1和sw3接通,使开关sw2和sw4断开(开关swbatt和swcap保持接通)。由此,车辆电源系统10返回到图11的上段所示的阶段(21)的状态。在该状态下,如上所述,来自电容器22的电流流入到充电用电容器19b,进而被充电到充电用电容器19b。由此,充电用电容器19b的端子间电压vc上升,并且电容器22的端子间电压vcap下降。

当充电用电容器19b的端子间电压vc下降到规定电压时,在时刻t25处,充电控制器19a切换各开关,再次使车辆电源系统10成为图11的中段所示的阶段(22)的状态。在该状态下,充电用电容器19b的端子间电压vc下降,并且电池18的端子间电压vbatt略微上升。以后,充电控制器19a交替地切换阶段(21)的状态和阶段(22)的状态,将储存于电容器22的电荷充电到电池18,从而使电容器22的端子间电压vcap下降。

即,通过交替地重复图11的阶段(21)和阶段(22),使电容器22的端子间电压vcap下降到规定电压(例如60v)以下。此外,由于被充入从电容器22放电的电荷而引起的电池18的端子间电压vbatt的上升是微小的,端子间电压vbatt被维持在电池18的额定电压以下。

当在图10的时刻t28处电容器22的端子间电压vcap下降到规定电压以下时,充电控制器19a使车辆电源系统10成为图11的下段所示的阶段(23)的状态。即,充电控制器19a在时刻t29处使开关swbatt和swcap断开,并且使开关sw1~sw4也断开。由此,以串联方式电连接的电容器22与电池18的连接被切断。在该状态下,电容器22的端子间电压vcap、电池18的端子间电压vbatt均为规定电压以下,确保了乘员的针对触电的安全性。此外,在本实施方式中,从在图10的时刻t21处接收到气囊展开信号时(碰撞时)到在时刻t29处电容器22与电池18的连接被切断为止需要规定时间。这里,在jncap的“电动汽车等的碰撞时的触电保护性能试验”中规定碰撞后5秒至60秒后的残余电压为dc60v以下。因此,通过预先将“规定时间”设定为例如小于5秒,能够可靠地满足“触电保护性能试验”的要求。另外,能够根据各国的高电压限制来设定各种“规定时间”。

接下来,参照图12来说明在车辆1碰撞时使电容器22的电荷放电的情况下的充电控制器19a的作用。

图12是表示使电容器22的电荷放电时的充电控制器19a所进行的控制的流程图。在车辆电源系统10的工作中,通过充电控制器19a而以规定的时间间隔反复执行基于图12所示的流程图的处理。

首先,在图12的步骤s1中,从搭载于车辆1的各传感器向充电控制器19a读入各种检测信号。在该步骤s1中读入的检测信号中包含有电池18的端子间电压vbatt、电容器22的端子间电压vcap、从控制装置24发送的气囊展开信号。此外,电池18以及电容器22的各端子间电压在步骤s1之后也以时间序列持续地输入到充电控制器19a。

接着,在步骤s2中,判断车辆1是否发生了碰撞。即,在从控制装置24输入了气囊展开信号的情况下,充电控制器19a判断为车辆1发生了碰撞,为了使电容器22的端子间电压vcap下降而执行步骤s3以下的处理。另外,在未输入气囊展开信号的情况下,判断为没有车辆1的碰撞,结束图12所示的流程图的一次处理。即,在车辆1未碰撞的情况下,由于车辆电源系统10能够正常地动作,因此不执行电容器22的电荷的放电。此外,在本实施方式中,充电控制器19a基于气囊展开信号来判断车辆1有无碰撞。与此相对,作为变形例,也可以按如下方式构成本发明:将前后加速度传感器24a和横向加速度传感器24b(图1)的检测信号输入到充电控制器19a,对这些信号和规定的阈值进行比较,由此判断有无碰撞。

并且,在步骤s3中,判断在步骤s1中输入的电容器22的端子间电压vcap是否高于规定电压。在端子间电压vcap高于规定电压的情况下前进到步骤s4,在为规定电压以下的情况下进入步骤s6。在步骤s6中,充电控制器19a切断电池18与电容器22的电连接(设为图11的阶段(23)的状态)。即,在车辆1发生了碰撞但电容器22的端子间电压vcap为规定电压以下的情况下,仅通过切断电池18与电容器22的连接,就不存在电压比规定电压高的高压部件。

另一方面,在步骤s4中,为了使电容器22的端子间电压vcap下降,执行电容器22的放电(图11的阶段(21)的状态)和被放电的电荷向电池18的充电(图11的阶段(22)的状态)。

接着,在步骤s5中,判断电容器22的端子间电压vcap是否已下降到规定电压以下。在端子间电压vcap未下降到规定电压以下的情况下,返回到步骤s4,再次执行电容器22的放电以及向电池18的充电。以下,反复执行步骤s4的处理,直至端子间电压vcap下降到规定电压以下为止。当电容器22的端子间电压vcap下降到规定电压以下时,执行步骤s6的处理,结束图12所示的流程图的一次处理。如上所述,在步骤s6中,电池18与电容器22的电连接被切断(设为图11的阶段(23)的状态),车辆电源系统10的各部的电压被设为规定电压以下。

根据本发明的第一实施方式的车辆电源系统10,在车辆1碰撞时,作为电容器放电器的充电装置19使储存于电容器22的电荷放电,放电的电荷被充电到电池18(图10、图11),因此能够使储存于电容器22的电荷尽快且可靠地放电。此外,由于电池18的额定电压低于规定电压,因此即使在被充入了从电容器22放电的电荷的情况下,电压也被抑制在规定电压以下,没有高电压引起的危险。

另外,根据本实施方式的车辆电源系统10,能够储存于电容器22的电荷量比能够储存于电池18的电荷量少,因此能够将储存于电容器22的电荷在短时间内向电池18放电。另外,由于能够储存于电池18的电荷量多,因此即使在被充入了从电容器22放电的电荷的情况下,电池18的端子间电压也几乎不会上升(图10),能够使电池18和电容器22可靠地成为低电压。

并且,根据本实施方式的车辆电源系统10,在从车辆1发生碰撞起规定时间以内,充电装置19使电容器22的电压下降到规定电压以下,因此能够更可靠地确保碰撞时的安全性。

另外,根据本实施方式的车辆电源系统10,电池18的额定电压被设定为比规定电压低,当电容器22的电压下降到规定电压以下时,电池18与电容器22的电连接被充电装置19切断(图10的时刻t29,图11的阶段(23))。因此,即使电池18和电容器22串联连接,在连接被切断后,也不存在具有电压超过规定电压的高电压部件,能够确保充分的触电保护性能。

接着,参照图13来对基于本发明的第二实施方式的车辆电源系统进行说明。

在上述的第一实施方式中,以车辆1碰撞时的触电保护为目的,使电容器22的端子间电压vcap下降。与此相对,在本实施方式中,以电容器22的维护中的更换作业时的触电保护为目的,使电容器22的端子间电压vcap下降。因此,在此,仅对本实施方式的与第一实施方式不同的点进行说明,对于同样的结构、作用、效果省略说明。此外,本发明的车辆电源系统也可以具备第一实施方式中的碰撞时的触电保护功能和本实施方式中的电容器更换时的触电保护功能这两者。

图13是表示在更换电容器22时使电荷放电时的充电控制器19a所进行的控制的流程图。在车辆电源系统的工作中,通过充电控制器19a而以规定的时间间隔反复执行基于图13所示的流程图的处理。

首先,在图13的步骤s11中,从搭载于车辆1的各传感器向充电控制器19a读入各种检测信号。在该步骤s11中读入的检测信号中包含有电池18的端子间电压vbatt、电容器22的端子间电压vcap、表示电容器22的罩(未图示)的卸下的信号。此外,电池18以及电容器22的各端子间电压在步骤s11之后也以时间序列持续地输入到充电控制器19a。

接着,在步骤s12中,判断电容器22的罩(未图示)是否已被卸下。即,搭载于车辆1的电容器22一直被罩(未图示)覆盖,在更换电容器22时需要卸下罩。在被该罩覆盖的部分设置有触点开关(未图示),当罩被卸下时,从触点开关将表示罩被卸下了的信号发送到充电控制器19a。在被输入了表示罩已卸下的信号的情况下,充电控制器19a判断为存在进行电容器22的更换作业的可能性,为了使电容器22的端子间电压vcap下降而执行步骤s13以下的处理。另外,在未被输入表示罩已卸下的信号的情况下,判断为不进行电容器22的更换,结束图13所示的流程图的一次处理。即,在电容器22的安装有罩(未图示)的状态下,电容器22不会被更换,因此不需要使电容器22的电荷放电而使端子间电压vcap下降。

此外,在本实施方式中,充电控制器19a基于作为表示电容器22的更换可能性的信号的、来自触点开关(未图示)的信号,来判断是否进行电容器22的更换。与此相对,作为变形例,在为了进行维修而在车辆1的控制装置24连接有车辆维修用的电子设备(未图示)的情况下,也能够判断为存在更换电容器22的可能性。或者,也能够根据搭载于车辆1的汽车导航系统(未图示)来确定车辆1停车的场所,在车辆1在车辆维修工厂停车的情况下,判断为存在更换电容器22的可能性。因此,表示连接有车辆维修用的电子设备(未图示)的信号、来自汽车导航系统(未图示)的信号也能够用作表示电容器22的更换可能性的信号。

并且,在步骤s13中,判断在步骤s11中输入的电容器22的端子间电压vcap是否高于规定电压。在端子间电压vcap高于规定电压的情况下进入步骤s14,在为规定电压以下的情况下进入步骤s16。在步骤s16中,充电控制器19a切断电池18与电容器22的电连接(设为图11的阶段(23)的状态)。即,在电容器22的端子间电压vcap为规定电压以下的情况下,能够安全地进行电容器22的更换作业,因此不需要使端子间电压vcap下降,不进行电容器22的电荷的放电。并且,在步骤s16中,切断电池18与电容器22的电连接,由此能够不受储存于电池18的电荷的影响而进行电容器22的更换作业。此外,本发明的第一实施方式中的碰撞时的规定电压和本实施方式中的电容器22的更换时的规定电压也能够设定为不同的电压。

另一方面,在步骤s14中,为了使电容器22的端子间电压vcap下降,执行电容器22的放电(图11的阶段(21)的状态)和被放电的电荷向电池18的充电(图11的阶段(22)的状态)。

接着,在步骤s15中,判断电容器22的端子间电压vcap是否已下降到规定电压以下。在端子间电压vcap未下降到规定电压以下的情况下,返回到步骤s14,再次执行电容器22的放电以及向电池18的充电。以下,反复执行步骤s14的处理,直至端子间电压vcap下降到规定电压以下为止。当电容器22的端子间电压vcap下降到规定电压以下时,执行步骤s16的处理,结束图13所示的流程图的一次处理。如上所述,在步骤s16中,电池18与电容器22的电连接被切断(设为图11的阶段(23)的状态),车辆电源系统的各部的电压被设为规定电压以下。

此外,在本实施方式中,在步骤s12中判定出电容器22的罩(未图示)已被卸下之后,在规定时间以内,端子间电压vcap被下降到规定电压以下。因此,能够在实际开始电容器22的更换作业之前使电容器22的端子间电压vcap可靠地下降到规定电压以下。

根据本发明的第二实施方式的车辆电源系统,在更换电容器22时,作为电容器放电器的充电装置19使储存于电容器22的电荷放电,放电的电荷被充电到电池18。因此,能够使储存于应更换的电容器22的电荷迅速地放电,能够安全地更换电容器22。

另外,根据本实施方式的车辆电源系统,在更换电容器22时,充电装置19也在规定时间以内使电容器22的电压下降到规定电压以下。因此,在更换电容器22时,电容器22的电压迅速地下降,因此能够安全且迅速地更换电容器22。

以上,对本发明的实施方式进行了说明,但能够对上述的实施方式施加各种变更。特别是,在上述的实施方式中,车辆电源系统被用于了车辆的主驱动电动机和副驱动电动机的驱动,但本发明的车辆电源系统能够用于向搭载于车辆的任意的电气设备供给电力。另外,在上述的实施方式中,车辆电源系统构成为能够通过外部电源进行充电,但也可以将本发明应用于仅能够储存由搭载于车辆的电动机、发电机等生成的电力的车辆电源系统。并且,在上述的实施方式中,将本发明应用于了具有额定电压48v的电池的车辆电源系统,但也可以将本发明应用于具有标称电压低于规定电压的电池的车辆电源系统。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1