混合动力机动车辆的减排方法和装置与流程

文档序号:25035241发布日期:2021-05-11 17:06阅读:93来源:国知局
混合动力机动车辆的减排方法和装置与流程

本公开涉及混合动力机动车辆电池和排放控制系统。



背景技术:

混合动力机动车辆(hybridvehicle,hv)至少有一部分动力来自电池(以电池组的形式提供),该电池组有多个独立电池单元。新电池处于峰值容量,可能会随着使用和老化而退化。hv可能仅依靠电池电力、仅依靠发动机电力或组合使用电池电力和发动机电力来运行。当电池电力不足以提供动力时,可能需要发动机运转。发动机运转时会产生多种污染物,其中一种是微粒排放物,许多污染物都受到政府标准的管制。一些污染物通常使用催化剂进行控制。针对这些污染物,存在冷启动发动机减排策略,但是某些微粒不能通过有效的催化剂操作来减少或消除。因此,使用微粒过滤器来去除烟尘,然而微粒过滤器需要空间,会增加重量,并产生额外的设计和安装成本。在以汽油作为燃料的车辆上,在发动机运转循环开始时对催化剂进行的快速预热称为催化剂点火。通常,这些策略利用提高发动机转速和延迟点火正时的组合,将燃料能量导向催化剂,而不是发动机扭矩。

当hv电池老化时,其会在排放达标窗口期间失去电力和能量。在部分混合动力电动车(partialhybridelectricvehicle,phev)应用中,这可能会导致过量排放,因为phev和电池不能像电池寿命开始时那样工作。这可能导致政府现在所使用的排放循环测试失败。此外,必须维持输出扭矩以驱动循环,因此仅将phev运行限制为发动机运行或允许hv电池过度耗尽以获得输出扭矩的选项不是hv电池电力损失的可接受解决方案。为了限制hv电池电力的损失,已经特别注意维持电池组荷电状态(state-of-charge,soc)的各个方面。soc通常定义为电池剩余电荷与其满充电容量的比率。研究发现,限制电池soc范围以提供更多的电荷维持能量也可能会妨碍满足电动车(electricvehicle,ev)的续航要求。

因此,虽然当前的hv电池系统实现了其预期目的,但是仍需要一种用于减少混合动力电动车(hybridelectricvehicle,hev)排放的新型、改进的系统和方法。



技术实现要素:

根据几个方面,一种用于混合动力机动车辆的减排系统,包括由电池组和发动机提供动力的机动车辆。阈值电池组荷电状态(soc)是预先确定的。当车辆使用来自电池组的电力运行时,以及当达到阈值电池组荷电状态(soc)以减轻车辆排放超标时,发出发动机运转电荷耗尽(engine-onchargedepletion,eocd)指令,以在定义发动机催化剂点火运行的轻运行条件下启动发动机。

在本公开的另一方面,电池组具有小于阈值电池组soc的最小电池组soc。

在本公开的另一方面,最小电池组soc约为16%的soc。

在本公开的另一方面,阈值电池组荷电状态(soc)约为25%的soc。

在本公开的另一方面,该系统还包括发动机控制器。发动机控制器收集包括环境温度、电池容量变化和电池组soc的数据,并存储最低阈值温度t1和阈值电池组荷电状态(soc)的预定值。

在本公开的另一方面,发动机控制器包括指令信号发生器,用以发出发动机自动启动和停止的信号。

在本公开的另一方面,发动机催化剂点火运行条件定义了范围在怠速转速至大约1500转/分之间的发动机转速。

在本公开的另一方面,在发动机-催化剂点火运行条件下运行的时间大约为两分钟。

在本公开的另一方面,在发动机-催化剂点火运行条件下的最低运行限制为直到大约60℃的发动机最低阈值温度达到。

在本公开的另一方面,电池组的电荷耗尽/电荷维持(chargedepletion/chargesustaining,cd-cs)转变点p1约为16%的soc,定义了电池组使用的最小电池组soc。

根据几个方面,一种用于混合动力机动车辆的减排系统,包括:机动车辆,该机动车辆由电池组和发动机提供动力;以及与电池组和发动机通信的控制器。阈值电池组荷电状态(soc)是预先确定的。最小电池组soc小于阈值电池组soc。当车辆使用来自电池组的电力运行时,以及当达到阈值电池组荷电状态(soc)以减轻车辆排放超标时,控制器发出发动机运转电荷耗尽(eocd)指令,以在发动机催化剂点火运行条件下启动发动机。

在本公开的另一方面,发动机的最低阈值温度约为60℃,其中当发动机达到最低阈值温度时,轻运行条件或发动机催化剂点火运行条件停止。

在本公开的另一方面,当发动机达到最低阈值温度时,冷启动排放减少(coldstartemissionsreduction,cser)完成。

在本公开的另一方面,当发动机成为主要能源时,可获得机动车辆的电荷维持运行,其中温室气体排放物和烟尘不超过排放标准。

在本公开的另一方面,温度传感器测量发动机冷却液温度,以确定最低阈值温度。

在本公开的另一个方面,最小电池组soc定义了电荷耗尽/电荷维持转变点p1,在该转变点,从使用电池组的车辆动力操作转变为使用发动机的车辆动力操作。

在本公开的另一方面,最小电池组soc约为16%的soc;阈值电池组荷电状态(soc)的范围为约20%到约35%(含)。

根据几个方面,一种用于混合动力机动车辆的减排系统的操作方法,包括:在机动车辆运行期间使用电池组的电力测量电池组的电池指标;确认电池组的容量是否已降低;如果对确认步骤的响应为“是”,指示电池组的容量已降低,则确定soc转变点和定义阈值电池组soc的经调整的soc转变点;在达到定义soc转变点的电荷耗尽/电荷维持转变点之前,当达到阈值电池组soc时,自动启动发动机;运行发动机,直到发动机达到预定的最低阈值温度。

在本公开的另一方面,该方法还包括:选择阈值电池组荷电状态soc,其约为25%的soc,定义了经调整的soc转变点;当达到经调整的soc转变点时,从使用电池组的电力的机动车辆运行转变到使用发动机的电力的机动车辆运行。这方面也可以称为“抢先发动机启动”。

在本公开的另一方面,该方法还包括在发动机以点火运行模式运行的情况下执行运行正常的冷启动减排(cser)催化剂点火(catalystlight-off,clo),包括将发动机转速限制在怠速转速至大约1500转/分之间,直到发动机达到预定的最低阈值温度。

在本公开的另一方面,该方法还包括确保当发动机运行时,对发动机-催化剂点火运行期间产生的发动机功率量进行限制,以最小化燃油吞吐量和产生的污染物量。

从本文提供的描述中,其他的适用范围将变得显而易见。应当理解的是,该描述和具体示例仅仅是为了说明的目的,而不是为了限制本公开的范围。

附图说明

本文描述的附图仅用于说明目的,并不旨在以任何方式限制本公开的范围。

图1是在一示例性方面的具有用于混合动力机动车辆的减排系统的机动车辆的侧视局部剖视图;

图2是使用图1系统的方法步骤的流程图;以及

图3是表示随时间变化的电池指标的曲线图,该图将寿命开始时(beginning-of-life,bol)的电池组能量与寿命结束时(end-of-life,eol)的电池组能量进行了比较。

具体实施方式

以下描述本质上仅仅是示例性的,并不旨在限制本公开、应用或用途。

参照图1,一种用于混合动力机动车辆的减排系统10,包括混合动力机动车辆12上的减排装置。混合动力车辆(hv)12包括至少一个从动轮14,该从动轮14通过电动机16的运行而旋转。电动机16运行的动力可由具有多个电池单元的电池组18提供,并可由发动机20(如汽油发动机或柴油发动机)补充动力。根据几个方面,还可以使用提供多个传动比的变速器22在电池组18和发动机20之间分配动力。

为了最大限度地提高运行经济性和降低油耗,预计将最大限度地使用来自电池组18的电力来运行hv12。此外,发动机20的运行产生温室气体和微粒(包括烟尘)。众所周知,使用催化转化器24可以减少温室气体,但是使用催化转化器24不能清除烟尘等微粒。当发动机20最初以发动机冷(环境温度)启动时,发动机气门和气缸是冷的,因此在发动机工作温度能够使燃油完全蒸发之前,产生的烟尘最多,从而导致燃油不完全燃烧。

当hv12使用来自电池组18的电力运行时,电池电力将减少。这种电力减少在电池组寿命延长时以及当环境温度接近大约-40华氏度的最冷环境温度时会加剧。预计通过在电池组18达到最小电池组荷电状态(soc)之前启动发动机20运行来避免电池组耗尽。soc被定义为电池组18中剩余电荷与电池组满充电容量的比率。根据几个方面,最小电池组soc可能约为16%的soc,并且该值可能高于或低于16%的soc。

当达到阈值电池组soc(高于最小电池组soc)时,可发出发动机运转电荷耗尽(eocd)指令,以给车辆驾驶室加热器通电,并如下所述,以减轻车辆排放超标的情况。响应于eocd指令,发动机20启动,同时继续从电池组18中提取电力。需要注意的是,由于发动机20最初可能处于环境温度条件下,因此在启动发动机20运行后立即要求发动机20输出电力是不可取的,因为可能会产生烟尘和其它排放物。如果发动机20需要过多的电力来满足驱动循环或为电池组18再充电,微粒排放也会高于标准水平。

因此,本公开提供了一种方法,该方法确定并应用预定阈值电池组soc,该预定阈值电池组soc高于最小电池组soc,以调度何时生成发动机运转电荷耗尽(eocd)指令。目前,eocd操作主要用于冬季电荷耗尽操作中的加热器性能,以加热发动机冷却液,从而提高车厢舒适度。本公开的用于混合动力机动车辆的减排系统10进一步将eocd操作作为“发动机缸体加热功能”,并确定如何在电池组达到最小电池组soc之前,通过使用发动机-催化剂点火运行条件(定义如下)产生热量,从电池放电变为电池电荷维持水平。该方法使用电池组容量和/或类似的电池指标,并利用操作系统逻辑在电池组soc达到定义电荷耗尽/电荷维持转变点p1的最小电池组soc之前,轻微地运行发动机20。目标是实现冷启动减排(cser),并且发动机缸体/进气温度等于或高于预定最低阈值温度t1,使得当发动机20在hv12的电荷维持运行期间成为主要能源时,温室气体排放物和烟尘不超过排放标准。

本公开提供了冷启动减排的额外阶段,该阶段最大限度地减少燃油质量,从而最大限度地减少发动机熄火时发动机微粒数(pn)排放。微粒(如烟尘)的减少取决于发动机20(进气气缸盖、气缸壁)的温度,而不是催化转化器24催化剂的温度。需要注意的是,将催化转化器催化剂加热到有效工作温度的时间比产生发动机缸体热量的时间短。允许发动机缸体升温以实现pn减排和其他减排的因素有时是不相关的。

在几个方面,混合动力机动车辆的减排系统10在大约25%的阈值电池组荷电状态(soc)下自动启动发动机20的运行。发动机20在发动机-催化剂点火或“轻”发动机运行条件下自动启动,该条件在本文中定义为发动机20的空载条件,例如在大约700转/分钟至1100转/分钟的怠速转速到大约1500转/分钟的发动机转速范围内运行。这使得发动机20在向发动机20施加负载之前,从环境温度预热到大约60℃的发动机缸体预定最低阈值温度t1。根据几个方面,用作发动机缸体温度的60℃温度定义了使用温度传感器测量的发动机冷却液温度,并且对于不同的发动机设计,可以在60℃以上和以下变化。预计发动机“轻”运行大约2分钟,将达到大约60℃的发动机缸体预定最低阈值温度t1,高于该温度时,温室气体和烟尘排放符合排放标准,因此定义了发动机-催化剂点火运行条件下的最小运行极限。大约25%的阈值电池组荷电状态(soc)取决于车辆,可以在本公开的范围内变化,并且可以在大约20%的soc到大约35%的soc的范围内变化。

在发动机“轻”运行完成后,发动机20达到一发动机缸体温度,该温度等于或高于大约60℃的预定最低阈值温度t1。这允许发动机20然后在hv12的电荷维持运行期间作为主要能量源运行,并且温室气体排放物和烟尘不超过排放标准。当达到最低阈值温度t1时,如果对hv12的电荷维持操作无进一步的发动机需求,或者如果无进一步的发动机需求,则发动机20可以自动关闭,并且将作为储热器保持预定最低阈值温度t1一段时间或以超过预定最低阈值温度t1的温度保持一段时间,或者直到hv12达到大约25%的阈值电池组荷电状态(soc)点p1的下一个操作点。

发动机控制器26收集诸如环境温度、电池容量变化和soc的数据,并存储最低阈值温度t1、阈值电池组荷电状态(soc)和soc转变点p1的预定值,下面将更详细地讨论。发动机控制器26包括指令信号发生器,当达到预定最低阈值温度t1时,生成指令信号以自动启动和停止发动机20,监测发动机温度并跟踪发动机运行的时间。

参照图2并再次参照图1,一种用于运行混合动力机动车辆的减排系统10的方法,包括:第一步骤28,测量电池组18的电池指标。第二步骤30,基于该电池指标,确定电池组18的容量是否降低。如果对第二步骤30的响应为“否”,指示电池组18的容量没有降低,则在第三步骤32,执行冷启动的预定寿命开始(bol)目标处的cd-cs转变点p1。在第四步骤34,执行正常运行的cser催化剂点火。在第五步骤36,发动机20以电荷维持模式正常运行。

继续参照图2,如果对第二步骤30的响应为“是”,指示电池组18的容量降低,则在第六步骤38,确定soc转变点p1,并且生成经调整的soc转变点p2,该转变点p2定义阈值电池组soc。在第七步骤409,在达到16%的cd-cs转变点p1之前,例如在约25%的阈值电池组荷电状态(定义经调整的soc转变点p2)下,发动机20自动开启。在第八步骤42,在发动机20以“轻”模式运行的情况下执行正常运行的cser催化剂点火(clo)。在第九步骤44,发动机20继续以“轻”模式运行,直到soc达到预定的电池电荷维持(cs)状态。在第十步骤46,发动机20在电池cs状态下维持运行。

参照图3并再次参照图2,图48标识了时间50上的示例性电池指标,其用于确定如何生成经调整的soc转变点p2。图48包括第一横坐标52和第二横坐标54,第一横坐标52表示电池组18在寿命开始(bol)时的能量,而第二横坐标54表示电池组18在寿命结束(eol)时的能量。bol处的最大可用(100%)能量单位56大于eol处的最大可用(100%)能量单位58,因此第一横坐标52上的位置60(表示16%的soc)处的初始cd-cs转变点p1被降到第二横坐标54上的位置62。为了在eol维持相似的soc裕度,选择位置64处的经调整的soc转变点p2。

本公开的混合动力机动车辆(包括部分混合动力机动车辆)的减排系统提供了若干优点,包括监测和使用随时间推移而降低的电池容量/性能,这与在预期的cd-cs转变发生之前的主动发动机启动决策相关联。当达到预定的soc阈值时,系统自动启动车辆发动机。该系统允许机动车辆发动机在空载或怠速条件下预热几分钟,该空载或怠速条件定义了轻运行条件,并且在转变到电荷维持运行之前不超过排放标准。使用该系统,无需使用用于清除烟尘的微粒过滤器。

本公开的描述本质上仅仅是示例性的,并且不脱离本公开主旨的变型旨在落入本公开的范围内。这种变化不应被视为脱离本公开的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1