串联混合动力车辆的控制方法以及串联混合动力车辆与流程

文档序号:29639977发布日期:2022-04-13 18:11阅读:104来源:国知局
串联混合动力车辆的控制方法以及串联混合动力车辆与流程

1.本发明涉及一种串联混合动力车辆的控制方法以及串联混合动力车辆。


背景技术:

2.关于作为动力源而具有内燃机以及驱动用电机的混合动力车辆,在jp2018-135045a中公开了如下控制,即,为了减弱因内燃机的振动经由发动机支架传递至车室地板而产生的地板振动,使上述驱动用电机产生反向转矩。


技术实现要素:

3.在串联混合动力车辆中,已知驱动用电机的壳体与内燃机连结而以一体化的状态搭载有内燃机以及驱动用电机的结构。在这种结构中,如果驱动用电机产生转矩,则对内燃机进行支撑的发动机支架被其反作用力压缩,发动机支架的弹簧常数增大。而且,如果发动机支架的弹簧常数增大,则地板振动成为问题的发动机旋转速度的共振旋转速度区域向高旋转速度侧偏移。在该情况下,为了排气净化催化剂的暖机促进等而限制发动机旋转速度的上限,如果内燃机以相对较低的旋转速度工作,则发动机旋转速度有可能落入上述共振旋转速度区域。即,有可能因内燃机的燃烧激振力产生共振而导致地板振动增大。
4.在上述文献没有公开抑制因上述理由而产生的地板振动的增大。
5.因此,本发明的目的在于,抑制因驱动用电机产生转矩引起共振旋转速度区域向高旋转速度侧偏移而产生的地板振动的增大。
6.根据本发明的某个方式,提供一种串联混合动力车辆的控制方法,对驱动用电机和内燃机在被一体化的状态下经由多个支架部件而支撑于车身的串联混合动力车辆进行控制,控制器使由内燃机的动力驱动的发电用电机进行发电,利用发电所得的电力使驱动用电机对驱动轮进行驱动,在减速时使驱动用电机产生与减速请求相应的再生转矩。在该控制方法中,将再生转矩的上限限制为,使得发电时的所述内燃机的发动机旋转速度高于产生车身地板部的共振的发动机旋转速度区域即基于再生转矩的上限而规定的地板振动产生区域的大小,利用驱动用电机产生再生转矩。
附图说明
7.图1是表示车辆的要部的概略结构图。
8.图2是用于对地板振动增大的机制进行说明的图。
9.图3是在协调再生制动时限制了发动机动作点区域的下限的情况下的时序图。
10.图4是表示用于执行协调再生制动的处理功能的框图。
11.图5是用于对再生转矩上限值的计算方法进行说明的图。
12.图6是用于下限旋转速度的计算的表的一个例子。
13.图7是执行了本实施方式所涉及的控制的情况下的时序图的一个例子。
14.图8是执行了本实施方式的变形例所涉及的控制的情况下的时序图。
具体实施方式
15.下面,参照附图对本发明的实施方式进行说明。
16.图1是表示车辆1的要部的概略结构图。车辆1具有内燃机2(图中的eng)、发电用电机3(图中的gen)、驱动用电机4(图中的mg)、电池5以及驱动轮6。此外,驱动轮6为车辆1的前轮。即,车辆1为前轮驱动车。
17.内燃机2可以是汽油发动机或者柴油发动机中的任一者。发电用电机3由内燃机2的动力驱动而发电。驱动用电机4由电池5的电力驱动而对驱动轮6进行驱动。驱动用电机4还具有如下所谓再生功能,即,在减速时等随着驱动轮6的旋转被带动旋转,由此使得减速能量作为电力而再生。由发电用电机3发电所得的电力、以及利用驱动用电机4再生的电力对电池5充电。
18.车辆1具有第1动力传递路径21以及第2动力传递路径22。第1动力传递路径21用于在驱动用电机4与驱动轮6之间传递动力。第2动力传递路径22用于在内燃机2与发电用电机3之间传递动力。第1动力传递路径21及第2动力传递路径22是相互独立的动力传递路径、即不从第1动力传递路径21及第2动力传递路径22中的一者向另一者传递动力的动力传递路径。
19.第1动力传递路径21构成为具有:第1减速齿轮11,其设置于驱动用电机4的旋转轴4a;第2减速齿轮12,其与第1减速齿轮11啮合;第3减速齿轮13,其和第2减速齿轮12设置于同轴上而与差速齿轮14啮合;以及差速齿轮14,其设置于差速箱15。
20.第2动力传递路径22构成为具有:第4减速齿轮16,其设置于内燃机2的输出轴2a;第5减速齿轮17,其与第4减速齿轮16啮合;以及第6减速齿轮18,其设置于发电用电机3的旋转轴3a,与第5减速齿轮17啮合。
21.第1动力传递路径21及第2动力传递路径22各自不具有将动力传递切断的要素。即,第1动力传递路径21及第2动力传递路径22各自始终处于被传递动力的状态。
22.第2动力传递路径22构成动力传递系统23的动力传递路径。动力传递系统23形成为如下结构,即,包含内燃机2以及发电用电机3,在内燃机2的电机运转时从发电用电机3向内燃机2传递动力。
23.车辆1还具有作为控制部的控制器30。除了进行内燃机2的控制的发动机控制器31、进行发电用电机3的控制的发电用电机控制器32、进行驱动用电机4的控制的驱动用电机控制器33、以及统一进行车辆1的控制的综合控制器34以外,控制器30构成为还具有后述的防横滑装置41以及车身控制组件42。
24.发动机控制器31由具有中央运算装置(cpu)、只读存储器(rom)、随机存取存储器(ram)以及输入输出接口(i/o接口)的微型计算机构成。关于发电用电机控制器32、驱动用电机控制器33以及综合控制器34也一样。发动机控制器31、发电用电机控制器32以及驱动用电机控制器33经由综合控制器34而由can标准的总线以相互可通信的方式连接。
25.在控制器30被输入来自包含用于对内燃机2的旋转速度ne进行检测的旋转速度传感器81、用于对表示加速器踏板的踩踏量的加速器开度apo进行检测的加速器开度传感器82、用于对内燃机2的水温thw进行检测的水温传感器83、用于对车速vsp进行检测的车速传感器84在内的各种传感器/开关类的信号。上述信号直接或者经由发动机控制器31等其他控制器而输入至综合控制器34。此外,车速vsp可以从车速传感器84经由防横滑装置
(vehicle dynamics controller:vdc)41直接输入至综合控制器34。
26.车辆1构成利用由内燃机2的动力驱动而发电的发电用电机3的电力,由驱动用电机4对驱动轮6进行驱动的串联混合动力车辆。
27.此外,在图1中为了容易理解动力传递路径而在分离的位置描画出了内燃机2和驱动用电机4,但实际上对驱动用电机4进行收容的壳体经由作为动力传递路径22的齿轮箱与内燃机2连结而一体化。而且,内燃机2以及驱动用电机4在一体化的状态下经由发动机支架7以及电机支架(未图示)而弹性支撑于车辆1。
28.驾驶员进行多个挡位以及驱动模式的切换操作而驾驶车辆1。通过对未图示的换挡器进行操作而进行挡位的切换。能够通过换挡器选择的挡位包含停车挡位(p挡位)、后退挡位(r挡位)、空挡挡位(n挡位)、第1前进挡位(d挡位)以及第2(b挡位)。此外,在无需区分d挡位和b挡位的情况下,有时还将它们统称为前进挡位。
29.通过对未图示的驱动模式开关进行操作而进行驱动模式的切换。驱动模式包含n模式、s模式以及eco模式。n模式设为通过加速器踏板操作而进行加速的模式(正常再生模式)。因此,在以n模式进行加速器踏板操作的期间不进行再生减速,在加速器踏板处于断开状态时进行再生减速。s模式以及eco模式设为通过加速器踏板操作而进行加速以及再生减速的模式(单踏板模式),eco模式设为比s模式更适合于燃油经济性运转的模式。
30.在车辆1中,通过与所选择的驱动模式的组合而构成d挡位与n模式组合的nd模式、与s模式组合的sd模式、与eco模式组合的eco-d模式。同样地,b挡位通过与所选择的驱动模式组合而构成nb模式、sb模式、eco-b模式。
31.b挡位设为与d挡位相比而通过驱动用电机4的再生产生的车辆1的减速度更大的挡位。换言之,在b挡位下,与d挡位相比,目标减速度设定得更大。减速度较大表示减速程度较大(减速度的绝对值较大)。关于目标减速度也一样。在b挡位下与d挡位相比而基于驱动用电机4的再生电力的绝对值增大的结果,减速度增大。另外,sd模式及eco-d模式与nd模式相比,基于驱动用电机4的再生电力增大,其结果,减速度增大。在下面的说明中,还将n模式称为正常再生模式,将s模式及eco模式称为强再生模式。
32.接下来,对综合控制器34执行的再生减速时的控制进行说明。
33.在本实施方式中,在车辆1减速时,执行协调再生制动。众所周知,协调再生制动是指通过将利用液压而工作的摩擦制动器的制动力和通过驱动用电机4的再生而产生的制动力相加,从而获得与驾驶员的制动器踏板操作量等相应地规定的目标制动力的控制。在本实施方式中,基本上在与基于驱动用电机4的制动力相对应地相对于目标制动力而制动力不足的情况下,使摩擦制动器工作。即,在协调再生制动时,驱动用电机4的再生转矩大于基于滑行行驶的再生转矩。
34.但是,如上所述,在驱动用电机4和内燃机2一体化而弹性支撑于车身的情况下,如果驱动用电机4产生转矩,则以其反作用力对发动机支架7进行压缩。而且,通过对发动机支架7进行压缩而使得发动机支架7的弹簧常数(弹性系数)增大。其结果,由内燃机2和发动机支架7构成的单一自由度系统的固有频率增大。通常,为了抑制所谓地板振动,以使得由内燃机2和发动机支架7构成的单一自由度系统的固有频率低于内燃机2的动作中的振动的频域的方式,设定发动机支架7的弹簧常数。然而,如上所述,如果通过驱动用电机4的转矩的反作用力对发动机支架7进行压缩而固有频率增大,则固有频率有可能落入内燃机2的动作
中的振动的频域。图2示出了该情况。
35.图2的横轴为发动机旋转速度以及内燃机的燃烧激振力的频率。图2例如表示发动机旋转速度为ne1时的燃烧激振力为f1。
36.从发动机旋转速度ne1至发动机旋转速度ne2的旋转速度区域是在驱动用电机4未产生转矩的状态下利用燃烧激振力而产生共振的区域(下面,也称为共振旋转速度区域)。从发动机旋转速度ne5至发动机旋转速度ne6的旋转速度区域是内燃机2为了发电而执行动作时能够实现的区域(下面,也称为发动机动作点区域)。
37.在驱动用电机4没有产生转矩的情况下,如图2所示,共振旋转速度区域偏离发动机动作点区域,因此即使为了发电而内燃机2执行动作也不会产生共振。而且,未产生共振,因此地板振动不会成为问题。此外,“地板振动成为问题”是指地板振动超过容许值。容许值根据应用本实施方式的车辆1的规格等而任意地设定。
38.如果驱动用电机4产生转矩,则如上所述共振旋转速度区域向高旋转侧转移。如图2所示,如果共振旋转速度区域转移至ne3-ne5,则产生共振旋转速度区域和发动机动作点区域的重叠部分。即,由于为了发电而执行动作的内燃机2的燃烧激振力产生共振,从而地板振动成为问题。
39.如果即使共振旋转速度区域向高旋转侧转移也不会与发动机动作点区域重叠,则不存在问题。然而,在执行协调再生制动的情况下,驱动用电机4的再生转矩产生量增大,因此基于共振的地板振动成为问题的可能性较高。
40.作为防止共振的对策,考虑了使发动机动作点区域向高旋转侧偏移。即,在通过协调再生制动而使得共振旋转速度区域转移至图2的ne3-ne5的情况下,将发动机动作点区域的下限限制为高于ne5的旋转速度。
41.图3是在协调再生制动时限制了发动机动作点区域的下限的情况下的时序图。
42.在图3中,直至定时t1为止,以踩踏加速器踏板的状态而行驶,在定时t1,加速器踏板断开,制动器踏板被踩踏而开始减速。
43.如果开始减速,则驱动用电机4的转矩(图中的驱动用电机转矩)从正变为负,开始基于再生的发电。此时的转矩(图中的实线)是对滑行再生转矩(图中的虚线)加上协调再生转矩所得的转矩。此外,在即使加上协调再生转矩也无法实现与制动器踩踏力相应的目标制动力的情况下,利用摩擦制动器弥补不足的制动力(图中的点划线)。
44.而且,为了抑制基于协调再生制动的地板振动的增大,使发动机旋转速度的下限提高。例如,在内燃机2为了发电而以怠速旋转速度执行动作的情况下,与驱动用电机转矩的减小(向负方向增大)相应地使发动机旋转速度的下限提高。
45.由此,能够使发动机动作点区域的下限高于共振旋转速度区域,因此能够抑制地板振动的增大。
46.然而,在串联混合动力车辆中,有时限制发电时的内燃机2的发动机旋转速度的上限。例如,在混合动力系统刚启动之后进行排气净化用催化剂的暖机的催化剂暖机模式的执行中、以及使行驶中温度降低的排气净化用催化剂升温的复原模式的执行中,限制发动机旋转速度的上限。另外,如果在内燃机2执行动作的情况下以较低车速行驶,则从内燃机2向外围设备的热量的传播量有可能增大。在用于抑制该现象的热保护模式的执行中也限制发动机旋转速度的上限。
47.而且,通过限制发动机旋转速度的上限,有可能无法使得发动机动作点区域的下限高于共振旋转速度区域的上限。即,有可能无法使得发动机旋转速度高于地板振动成为问题的共振旋转速度区域。
48.因此,在本实施方式中,通过执行下面说明的控制,从而在限制发动机旋转速度的上限的情况下,也能够兼顾协调再生制动和地板振动的抑制。
49.图4是表示用于执行控制器30(具体而言为综合控制器34)的协调再生制动的处理功能的框图。综合控制器34具有电机驱动力运算部43、变换部44、电机转矩指令值运算部45、再生转矩上限值设定部46、再生转矩上限值发送部47、下限旋转速度运算用电机转矩运算部48、下限旋转速度运算部29、请求旋转速度运算部50以及请求发动机转矩运算部51。此外,上述各运算部表示运算处理功能,并不表示物理上的结构。
50.电机驱动力运算部43基于加速器开度apo、车速vsp以及从bcm42输入的当前的驱动模式,对与加速器开度相应的请求驱动力进行运算。bcm42是指对电气部件的工作进行控制的控制器(车身控制组件)。对于请求驱动力,例如预先制作针对每个驱动模式而能够根据加速器开度apo以及车速vsp检索驱动力的对应图,将请求驱动力存储于综合控制器34,基于所输入的信号进行对应图检索而对该请求驱动力进行运算。
51.变换部44将请求驱动力变换为驱动用电机4的转矩(请求转矩)。这里获得的请求转矩被输入至电机转矩指令值运算部45以及下限旋转速度运算用电机转矩运算部48。
52.再生转矩上限值设定部46通过下面的方法而设定用于防止地板振动的驱动用电机4的再生转矩的上限值即再生转矩上限值。
53.[再生转矩上限值的设定方法]
[0054]
这里,将基于内燃机2的燃烧激振力的振动作为内燃机2设为质量m的刚体、发动机支架7设为弹簧常数k的弹性体的单一自由度系统的振动进行处理。此外,未考虑对与内燃机2一体化的驱动用电机4进行弹性支撑的电机支架而作为只有发动机支架7的单一自由度系统进行处理的理由在于,电机支架设置于与内燃机2分离的位置,因此在考虑内燃机2的振动时可以忽略。
[0055]
在通过上述催化剂暖机模式等而限制上限的情况下的发动机旋转速度中,以作为最低的发动机旋转速度的上限发动机旋转速度ru运转中的燃烧激振力频率fe由式(1)表示。此外,在本实施方式中,内燃机2设为3个气缸,对旋转1.5次的燃烧激振力频率进行计算。
[0056]
[数学式1]
[0057][0058]
上述单一自由度系统的固有频率由式(2)表示。
[0059]
[数学式2]
[0060][0061]
地板振动为容许水平的情况下的频率即目标固有频率ft由式(3)表示。
[0062]
[数学式3]
[0063]
ft[hz]=f*η

(3)
[0064]
式(3)中的η是用于使得固有频率f降低至地板振动的容许水平的系数。该系数η可以任意地设定。
[0065]
这里,如果燃烧激振力频率fe小于目标固有频率f,则地板振动达到容许水平。因此,如果作为式(1)>式(3)而对此时的弹簧常数k进行计算,则式(4)的关系成立。
[0066]
[数学式4]
[0067][0068]
再生转矩上限值设定部46利用这样获得的弹簧常数k而对再生转矩上限值进行计算。具体而言,通过图5所示的方法进行计算。
[0069]
图5表示预先测定的发动机支架7的弹簧常数特性。图5的上段表示作用于发动机支架7的载荷和发动机支架7的变形量(也称为压缩量)的关系,图5的下段表示发动机支架7的变形量和弹簧常数的关系。
[0070]
首先,根据图5的下段的特性图而对变为由式(4)规定的弹簧常数k时的变形量x1进行计算。接下来,根据图5的上段的特性图而对变为变形量x1时的载荷fm进行计算。将这样获得的载荷fm变换为转矩得到的是再生转矩上限值。
[0071]
返回至图4的说明。
[0072]
由再生转矩上限值设定部46设定的再生转矩上限值被输入至电机转矩指令值运算部45以及再生转矩上限值发送部47。再生转矩上限值发送部将再生转矩上限值向vdc41发送。
[0073]
vdc41以利用摩擦制动器弥补与再生转矩上限值和后述的请求再生转矩之差相应的制动力的方式对摩擦制动器的液压进行控制。
[0074]
除了与上述再生转矩上限值以及加速器开度相应的请求转矩以外,与制动器操作量相应的请求再生转矩也从vdc41输入至电机转矩指令值运算部45。而且,电机转矩指令值运算部45计算出通过再生转矩上限值对由与加速器开度相应的请求转矩和与制动器操作量相应的请求再生转矩规定的总再生转矩进行限制得到的值,作为电机转矩指令值,将其输入至驱动用电机控制器33。
[0075]
除了与上述加速器开度相应的请求转矩以外,与制动器操作量相应的请求再生转矩也从vdc41输入至下限旋转速度运算用电机转矩运算部48。而且,下限旋转速度运算用电机转矩运算部48将对与加速器开度相应的请求转矩和与制动器操作量相应的请求再生转矩相加所得的总再生转矩,作为用于对内燃机2的下限旋转速度进行运算的下限旋转速度运算用电机转矩而输入至下限旋转速度运算部49。
[0076]
下限旋转速度运算部49利用下限旋转速度运算用电机转矩对下限旋转速度进行计算。具体而言,利用例如图6所示的确定电机转矩和下限旋转速度的关系的表进行计算。例如在下限旋转速度运算用电机转矩为tq1的情况下,下限旋转速度为ne1。
[0077]
请求旋转速度运算部50基于为了催化剂暖机模式等而限制的上限旋转速度、以及由下限旋转速度运算部49计算出的下限旋转速度,决定请求旋转速度。这里,与地板振动相比优先考虑排气性能,因此与下限旋转速度相比优先考虑上限旋转速度。即,在上限旋转速度低于下限旋转速度的情况下,将上限旋转速度设为请求旋转速度。请求旋转速度被输入
至发电用电机控制器32以及请求发动机转矩运算部51。
[0078]
请求发动机转矩运算部51对与所输入的请求旋转速度相应的发动机转矩进行计算,将计算出的发动机转矩输入至发动机控制器31。
[0079]
如上所述,在本实施方式中,利用总再生转矩进行驱动用电机4的转矩限制以及内燃机2的旋转速度限制。本实施方式的车辆1为前轮驱动车,因此总再生转矩为基于前轮的再生转矩。
[0080]
此外,假设在车辆1为四轮驱动车的情况下,将前后轮的总再生转矩设为总再生转矩。在本实施方式中作为问题的地板振动,因前轮产生的电机转矩对发动机支架7进行压缩而使得内燃机2设为刚体的振动系统的固有频率增大而产生,因此可以认为在四轮驱动车的情况下也只要以前轮的电机转矩进行上述各限制即可。然而,在四轮驱动车的情况下,向前后轮的转矩的分配有时会变化,如果每当转矩的分配变化时发动机旋转速度发生变化,则有可能对驾驶员造成不和谐感。因此,如上所述,在四轮驱动车的情况下,将前后轮的总再生转矩设为总再生转矩。
[0081]
另外,上述再生转矩的限制局限于选择了前进挡位、且加速器开度为零的状态下的减速时。其理由如下。在选择了前进挡位、且加速器踏板被踩踏的情况下,即存在加速请求的情况下,发动机旋转速度与加速请求相应地升高,从而能够避免地板振动增大的条件。在选择了后退挡位、且加速器开度为零的状态下的减速时,原本电机转矩的请求值较小,因此地板振动增大的条件不成立。而且,在选择了后退挡位、且踩踏加速器踏板的情况下,假设即使地板振动增大的条件成立,也优先考虑动力性能。
[0082]
图7是执行上述控制的情况下的时序图的一个例子。这里,设为通过热保护模式而限制发动机旋转速度的上限。另外,设为未踩踏制动器踏板。
[0083]
在定时t1,如果加速器开度变为零而开始减速,则驱动用电机4的请求转矩如图中的虚线(图中的“限制前”)那样降低。换言之,请求的再生转矩增大。在产生限制前的请求转矩的情况下,为了抑制地板振动,需要使内燃机2的发动机旋转速度升高至下限旋转速度(图中的虚线)。然而,因为处于热保护模式的执行中,因此发动机旋转速度被限制为低于下限旋转速度的上限旋转速度。因此,在本实施方式中,利用上限旋转速度限制发动机旋转速度。其结果,发动机旋转速度如图中的实线那样。
[0084]
而且,为了在限制了发动机旋转速度的状态下抑制地板振动的增大,利用再生转矩上限值(图中的虚线)限制驱动用电机4的再生转矩。其结果,再生转矩变为图中的实线那样。
[0085]
并且,限制再生转矩而减小的制动力由摩擦制动器弥补。
[0086]
由此,在热保护模式的执行中,也能够进行协调再生制动且抑制地板振动的增大。
[0087]
如上所述,在本实施方式中,提供一种串联混合动力车辆的控制方法,对驱动用电机4和内燃机2在被一体化的状态下经由多个支架部件而支撑于车身的串联混合动力车辆进行控制,控制器30使由内燃机2的动力驱动的发电用电机3发电,利用发电所得的电力使驱动用电机4对驱动轮6进行驱动,在减速时使驱动用电机4产生与减速请求相应的再生转矩。在该控制方法中,将再生转矩的上限限制为,使得产生车身地板部的共振的发动机旋转速度区域即基于再生转矩的上限而规定的地板振动产生区域,与在产生了再生转矩的状态下发电用电机3发电时的内燃机2的发动机旋转速度相比降低的大小,利用驱动用电机4产
生再生转矩。换言之,以使得产生车身地板部的共振的发动机旋转速度区域即基于再生转矩的上限而规定的地板振动产生区域,与在产生了再生转矩的状态下发电用电机3发电时的内燃机2的发动机旋转速度相比降低的方式,对再生转矩的上限进行限制,利用驱动用电机4产生再生转矩。由此,即使在内燃机2为了发电而执行动作的情况下执行协调再生制动,也能够防止增大至无法容许地板振动的大小。
[0088]
在本实施方式中,对发电时的内燃机1的上限旋转速度下的燃烧激振力频率、和弹性支撑于发动机支架7的内燃机2的固有频率相等的情况下的发动机支架7的弹簧常数k进行计算,对计算出的弹簧常数k时的发动机支架7的压缩量x1进行计算,将该压缩量x1时的驱动用电机4的转矩设为再生转矩上限值。由此,能够设定与发动机支架7的弹簧常数的特性匹配的适当的再生转矩上限值。
[0089]
[变形例]
[0090]
接下来,对上述实施方式的变形例进行说明。该变形例也属于本发明的范围。
[0091]
在上述实施方式中,在再生转矩上限值设定部46在催化剂暖机模式、复原模式以及热保护模式下限制的上限旋转速度中,利用最低的发动机旋转速度对再生转矩上限值进行计算。与此相对,在本变形例中,利用与行驶情形相应的上限旋转速度对再生转矩上限值进行计算。例如,在催化剂暖机模式、复原模式以及热保护模式的各模式下,上限旋转速度不相同的情况下,利用当前执行的模式的上限旋转速度。另外,例如有时上限旋转速度在催化剂暖机模式的执行中发生变化,在该情况下使用当前的上限旋转速度。由此,能够防止过度地限制再生转矩以及发动机旋转速度。
[0092]
图8是在催化剂暖机模式执行中的减速时执行了变形例所涉及的控制的情况下的时序图的一个例子。
[0093]
如图8所示,设为在定时t2,催化剂暖机模式中的上限旋转速度的请求值(图中的egvr请求上限旋转速度)降低。另外,直至定时t2为止,上限旋转速度高于下限旋转速度,与定时t2以后的egvr请求上限旋转速度相对应的上限旋转速度低于下限旋转速度。
[0094]
根据本变形例,在上限旋转速度高于下限旋转速度的期间,能够将发动机旋转速度提高至下限旋转速度,因此能够以驱动用电机4的再生转矩弥补与制动器操作量相应的制动力。然而,如果上限旋转速度低于下限旋转速度,则发动机旋转速度限制为低于下限旋转速度的上限旋转速度,其结果,驱动用电机4的再生转矩也受到限制。由此,基于协调再生的制动力不足,因此进行基于摩擦制动器的制动力的弥补。
[0095]
这样,在本变形例中,发动机旋转速度的上限越降低,则越减小驱动用电机4的再生转矩的上限值。换言之,发动机旋转速度的上限越降低,则再生转矩的上限值越接近零。由此,即使在减速中途而再生转矩的限制的程度发生变化的情况下,车辆1的动作也不会出现该变化,因此不会对驾驶员造成不和谐感。
[0096]
以上对本发明的实施方式进行了说明,但上述实施方式不过示出了本发明的应用例的一部分,其主旨并非将本发明的技术范围限定为上述实施方式的具体结构。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1