车辆用控制装置、车辆用控制系统以及混合动力车辆的制作方法

文档序号:30907162发布日期:2022-07-27 00:19阅读:55来源:国知局
车辆用控制装置、车辆用控制系统以及混合动力车辆的制作方法

1.本发明涉及车辆用控制装置、车辆用控制系统以及混合动力车辆。


背景技术:

2.在能通过由发动机产生的电动势对电池进行充电的混合动力车辆中,已知有如下车辆控制装置:在利用发动机的行驶中判断为正在向预计泊车时间比规定的时间长的泊车地点进行移动的情况下,使电池的目标充电率下降,从比该泊车地点靠近前规定的距离的地点起通过电力进行行驶,从而减少电池的充电量(例如,参照日本特开2017-081416)。
3.然而,即使混合动力车辆从比泊车地点靠近前的地点起通过电力进行行驶,根据从该近前的地点起至泊车地点为止的行驶状态,也存在如下可能性:在到达该泊车地点时,电池的充电率未高效地下降至目标充电率。


技术实现要素:

4.本发明的方案提供能在混合动力车辆到达泊车地点时使电池的充电率高效地下降至目标充电率的车辆用控制装置和车辆用控制系统以及该混合动力车辆。
5.本发明的第一方案涉及一种车辆用控制装置,该车辆用控制装置被配置为搭载于混合动力车辆,所述混合动力车辆能用通过驱动发动机而产生的电力对电池进行充电。车辆用控制装置具有:预测部,被配置为获取被预测为在所述混合动力车辆的行驶路径上泊车时间超过规定的阈值的泊车地点的位置信息;目标设定部,被配置为设定所述电池的目标充电率,并且在所述混合动力车辆满足了向所述泊车地点的接近条件时,将所述目标充电率设定变更为比通常时的第一充电率低的第二充电率;以及电池控制部,被配置为控制所述电池的充放电量,使得所述目标设定部将所述目标充电率设定为所述第二充电率时的与所述第二充电率对应的所述电池的充放电量比通常时的与所述第二充电率对应的所述电池的充放电量向放电侧变大。
6.根据第一方案的车辆用控制装置,目标设定部将目标充电率设定为第二充电率时的与第二充电率对应的电池的充放电量比通常时的与第二充电率对应的电池的充放电量向放电侧变大。就是说,电池的电能(电力)被更主动地消耗。因此,能在混合动力车辆到达泊车地点时,使电池的充电率高效地下降至目标充电率。
7.此外,也可以是,所述目标设定部将所述目标充电率设定为所述第二充电率时的与所述第二充电率对应的所述电池的充放电量被设为通常时的与所述第二充电率对应的所述电池的充放电量的上限值。
8.根据该构成,目标设定部将目标充电率设定为第二充电率时的与第二充电率对应的电池的充放电量被设为通常时的与第二充电率对应的电池的充放电量的上限值。因此,电池的电能被可靠地消耗。需要说明的是,本发明中的“上限值”中包括上限值以下且接近上限值的值。
9.此外,也可以是,通常时的所述电池的充放电量的上限值和下限值基于所述电池
的充电容量、车速以及驾驶特性来决定。
10.根据该构成,通常时的电池的充放电量的上限值和下限值基于电池的充电容量、车速以及驾驶特性来决定。就是说,在通常时,根据混合动力车辆的行驶状态(车速)和驾驶特性来控制充放电量。因此,即使目标设定部将目标充电率设定为第二充电率,也以不会使电池劣化的方式消耗电池的电能。
11.此外,也可以是,所述接近条件中包括基于过去的数据而设定的距离校正值。
12.根据该构成,接近条件中包括基于过去的数据而设定的距离校正值。因此,与接近条件中不包括距离校正值的情况相比,能在混合动力车辆到达泊车地点时,使电池的充电率更高效地下降至目标充电率。
13.此外,也可以是,基于过去的数据而设定的充放电量校正值被加到所述目标设定部将所述目标充电率设定为所述第二充电率时的与所述第二充电率对应的所述电池的充放电量上。
14.根据该构成,基于过去的数据而设定的充放电量校正值被加到目标设定部将目标充电率设定为第二充电率时的与第二充电率对应的电池的充放电量上。因此,与充放电量校正值未被加到该充放电量上的情况相比,能在混合动力车辆到达泊车地点时,使电池的充电率更高效地下降至目标充电率。
15.本发明的第二方案涉及一种车辆用控制系统,该车辆用控制系统具备:第一方案的车辆用控制装置,搭载于混合动力车辆;以及获取部,被配置为能与所述车辆用控制装置进行通信,并被配置为获取所述泊车地点处的外部信息。
16.根据第二方案的车辆用控制系统,通过获取部来获取泊车地点处的外部信息。因此,与未通过获取部来获取泊车地点处的外部信息的情况相比,能在混合动力车辆到达泊车地点时,使电池的充电率高效地下降至目标充电率。
17.此外,本发明的第三方案涉及一种混合动力车辆,该混合动力车辆具备:发动机;电池,能用通过驱动所述发动机而产生的电力进行充电;行驶用的马达,通过充电至所述电池的电力进行驱动;以及第一方案的车辆用控制装置。车辆用控制装置被配置为在由所述发动机进行的驱动和由所述马达进行的驱动之间进行切换地使所述混合动力车辆行驶。
18.根据第三方案的混合动力车辆,与不具备车辆用控制装置的情况相比,能在混合动力车辆到达泊车地点时,使电池的充电率高效地下降至目标充电率。
19.如上所述,根据本发明的方案,能在混合动力车辆到达泊车地点时,使电池的充电率高效地下降至目标充电率。
附图说明
20.以下,参照附图,对本发明的示例性实施例的特征、优点以及技术和工业意义进行说明,其中,相同的附图标记表示相同的元件,其中:
21.图1是表示本实施方式的车辆用控制装置和车辆用控制系统的框图。
22.图2是用于对本实施方式的冷充电方法进行说明的示意图。
23.图3是表示在本实施方式的混合动力车辆中在soc高的情况和soc低的情况下进行了预热运转时的发动机水温与发动机转速的关系的图表。
24.图4是表示第一实施方式的控制过程的流程图。
25.图5是表示第一实施方式的电池的相对于soc的充放电量的图表。
26.图6是表示第一实施方式的变形例的控制过程的流程图。
27.图7是表示第二实施方式的控制过程的流程图。
28.图8是表示第二实施方式的变形例的控制过程的流程图。
29.图9是表示第三实施方式的控制过程的流程图。
30.图10是表示第三实施方式的电池的相对于soc的充放电量的图表。
31.图11是表示第三实施方式的变形例的控制过程的流程图。
具体实施方式
32.以下,基于附图,对本发明的实施方式进行详细说明。
33.<第一实施方式>
34.首先,对第一实施方式进行说明。如图1所示,在混合动力车辆10搭载有:发动机12;电池(锂离子二次电池(蓄电池))16,能用通过驱动发动机12而产生的电力(电能)进行充电;行驶用的马达14,通过充电至电池16的电力进行驱动;电池控制部18,通过控制发动机12和马达14来控制电池16的充电率(state of charge(荷电状态):以下有时称为“soc”);以及作为电子装置的车辆用控制装置20。
35.即,混合动力车辆10能在发动机12和马达14这两种驱动力之间适当进行切换地行驶。并且,如上所述,发动机12不仅为了行驶而被驱动,而且还为了对电池16进行充电而被驱动。需要说明的是,电池16通过马达14的再生也能充电。
36.车辆用控制装置20具有:第一控制装置22,包括分析部30、预测部32、履历信息储存部34、记录部36以及目标设定部38;以及第二控制装置24,包括位置检测部42和通信部44。它们由ecu(electronic control unit:电子控制单元)和在ecu上执行的软件程序构成。并且,车辆用控制装置20与传感器单元26、汽车导航系统28、发动机12、马达14、电池16以及电池控制部18电连接。
37.传感器单元26至少收集与外部环境和混合动力车辆10的行驶轨道(包括车速、转向角)相关的信息。需要说明的是,传感器单元26中可以包括转向角传感器、横摆角速度传感器、车轮脉冲传感器、雷达、方向指示器等。
38.分析部30获取并加工混合动力车辆10的当前位置、停止时刻、起动时刻、车速等感测到的信息(以下有时称为“一次信息”)来生成行驶履历信息(以下有时称为“二次信息”),并将该行驶履历信息记录于履历信息储存部34。需要说明的是,停止时刻是指指示了发动机12的停止的时刻,起动时刻是指指示了发动机12的起动的时刻。
39.此外,行驶履历信息(二次信息)中包括与混合动力车辆10的泊车相关的信息,即包括表示泊车日期和时间(时间段和星期几)、泊车时间以及泊车地点(目的地)的信息。并且,分析部30根据储存于履历信息储存部34的行驶履历信息(二次信息)和后述的储存于天气信息储存部52的天气信息来预测混合动力车辆10的一个以上泊车地点(目的地)。
40.预测部32根据来自传感器单元26的车速、转向角这样的信息和汽车导航系统28中的路径设定信息来预测混合动力车辆10的行驶路径。并且,预测部32从由分析部30预测到的一个以上泊车地点(目的地)中获取被预测为在混合动力车辆10的行驶路径上泊车时间超过规定的阈值的泊车地点(目的地)的位置信息,如后述那样设定从该位置起靠近前规定
的距离α的地点。
41.在履历信息储存部34中,基于混合动力车辆10的车辆id而储存有混合动力车辆10的行驶履历信息(二次信息)。记录部36适当记录一次信息。目标设定部38设定目标充电率。
42.在此,电池16中的soc的大的变化会使电池16劣化。因此,对于soc设定有上限值cu和下限值cd(参照图2)。就是说,电池16被电池控制部18控制为电池16的soc落在上限值cu至下限值cd的范围(容许范围)内。
43.位置检测部42从传感器单元26和汽车导航系统28获取混合动力车辆10的当前位置(位置信息)。通信部44将包含混合动力车辆10的车辆id的信息定期地发送至后述的管理中心50。需要说明的是,车辆id是能唯一地标识混合动力车辆10的信息即可。
44.此外,车辆用控制装置20与管理中心50经由通信网络46电连接,由此构建车辆用控制系统40。即,车辆用控制系统40的各构成要素以任意的计算机的cpu、存储器、加载到存储器的程序、储存该程序的硬盘等存储单元、网络连接用接口为中心,通过硬件和软件的任意的组合来实现。
45.管理中心50是在与车辆用控制装置20之间进行通信(信息的收发)的服务器,包括作为获取部的天气信息储存部52和通信部48。在天气信息储存部52中,通过从气象局获取天气信息来作为外部信息而储存有表示各地的预计气温等的天气信息。通信部48从车辆用控制装置20定期地接收信息,并将储存于天气信息储存部52的天气信息发送至车辆用控制装置20。
46.具备以上那样的车辆用控制装置20的混合动力车辆10在起动时为了预热而主动地驱动发动机12。将这样的兼顾了预热的发动机行驶称为“冷行驶”。当发动机12充分变热时(当冷行驶完成时),以后成为取得了发动机12与马达14的驱动力的平衡的行驶。
47.此外,混合动力车辆10在冷行驶中通过发动机12的驱动力的一部分使发电马达(省略图示)旋转,由此还同时并行地执行对电池16的充电。将利用冷行驶时的发动机12的驱动力对电池16进行充电称为“冷充电”,接着,对其冷充电方法进行说明。
48.如图2所示,设为混合动力车辆10例如在时刻t0从点s出发,在时刻t1到达点p1,在时刻t2到达点p2,在时刻t3到达点g。点s为出发地,点g为目的地。此外,将点s至点p1设为冷行驶的区间(以下称为“冷区间”)。
49.图2中的上部表示混合动力车辆10的行驶路径,图2中的下部表示电池16的soc的变化。就soc而言,0%为最低值,100%为最大值。对于soc设定有容许范围。容许范围由下限值cd和上限值cu定义。例如,假定soc的下限值cd为40%左右,soc的上限值cu为80%左右。
50.目标充电率例如被设定为65%左右。需要说明的是,以下,将作为通常时的目标充电率的第一充电率称为“基本目标充电率cm”。因此,本实施方式中的基本目标充电率cm为65%。根据以上,对将目标充电率固定为基本目标充电率cm的情况下的冷充电方法和将目标充电率设为可变的情况下的冷充电方法进行说明。
51.首先,对将目标充电率固定为基本目标充电率cm的情况进行说明。目标充电率被固定为soc的下限值cd与上限值cu之间的基本目标充电率cm。表示目标充电率为基本目标充电率cm时的充放电量的变化的是图2所示的soc-p1。就图2所示的soc-p1而言,以保持在基本目标充电率cm附近的方式控制充放电量。
52.如图2所示,当混合动力车辆10在点s起动时,混合动力车辆10暂时进行冷行驶,即
通过发动机12的驱动力进行行驶。需要说明的是,此时,发动机12也使发电马达旋转。发电马达作为发电机发挥功能,因此能执行冷充电。
53.在此,如果实际的soc比作为目标充电率的基本目标充电率cm低,则进行冷充电。然而,在该情况下,时刻t0的混合动力车辆10的soc-p1接近基本目标充电率cm,因此几乎无法享受冷充电效果。就是说,在开始冷行驶时,实际的soc已经足够大,因此进行冷充电的余地少。
54.接着,对将目标充电率设为可变的情况进行说明。在点s处将目标充电率设定为下限值cd与上限值cu之间的基本目标充电率cm这一点与将目标充电率固定为基本目标充电率cm的情况相同。然而,该情况下的实际的soc下降至下限值cd附近。即,表示此时的充放电量的变化的是图2所示的soc-p2。就图2所示的soc-p2而言,也是以保持在基本目标充电率cm附近的方式控制充放电量。
55.如图2所示,当混合动力车辆10在点s起动时,由于冷充电,soc-p2上升,直至达到基本目标充电率cm。即,起动时的实际的soc与基本目标充电率cm相比足够低,因此能享受冷充电效果(高效地进行冷充电)。
56.此外,通过冷充电,能对发动机12施加负荷,因此,如图3所示,还具有促进发动机12的预热这样的次要效果。就是说,在起动时的实际的soc例如小于50%时,与起动时的实际的soc例如为50%以上时相比,能使发动机水温提前规定时间j(例如j=几百秒)以上到达目标温度k(℃),其结果是能缩短冷区间(能使发动机12提前停止)。
57.如此,在混合动力车辆10中,为了能享受冷充电效果(提高冷充电的利用效率),需要在冷行驶的开始时间点,预先充分地降低实际的soc,具体而言,至少预先使实际的soc低于目标充电率(基本目标充电率cm)。因此,理想的是,在混合动力车辆10从点g重新出发时,目标充电率也下降至下限值cd附近(充放电量=0附近:参照图5)的第二充电率(以下称为“特殊目标充电率”)。
58.由此,在从点g重新出发时,能享受冷充电效果。并且,通过冷充电,会促进发动机12的预热,其结果是能缩短冷区间。如此,享受到冷充电效果,冷区间缩短有助于燃料的节约(燃料效率的提高)。
59.为了在混合动力车辆10从点g重新出发时,目标充电率(目标soc)下降至特殊目标充电率,需要准确地预测点g(目的地)。该预测例如能通过基于贝叶斯统计的预测模型来执行。
60.具体而言,首先,位置检测部42从传感器单元26和汽车导航系统28获取混合动力车辆10的当前位置(位置信息)。此时,分析部30获取车速,如果有停车和起步,则也获取停车和起步的时刻。然后,分析部30更新履历信息储存部34的行驶履历信息(二次信息)。
61.由此,在履历信息储存部34积累有混合动力车辆10的行驶履历信息(二次信息)。需要说明的是,在分析部30检测到泊车时,更新从上次的泊车地点起至本次的泊车地点为止的行驶频度。由此,行驶路径信息被更新。此外,作为一次信息的、感测到的信息记录于记录部36。
62.此外,分析部30根据基于混合动力车辆10的当前位置和行驶履历信息的可能性最高的行驶路径的预测信息来预测以后的泊车地点。就是说,分析部30预测一个以上泊车地点来作为目的地的候选地。进而,分析部30计算各候选地的预定抵达时刻。预定抵达时刻能
通过与汽车导航系统28等所进行的算法同样的算法来计算。
63.然后,分析部30预测各候选地的泊车时间,如图4所示,将被预计为长时间泊车的候选地预测为目的地(步骤s11)。需要说明的是,分析部30也可以根据从管理中心50发送来的各候选地的预定抵达时刻的预计气温来校正泊车时间。各地的预计气温作为天气信息被保存于管理中心50的天气信息储存部52。
64.预测部32根据预测到的目的地和经由地来预测行驶路径,将点p2设定在比目的地靠近前规定的距离α的地点。需要说明的是,在到达目的地之前,经由地和目的地的预测发生了变化时,预测部32适当重新设定点p2。
65.如此,混合动力车辆10能在行驶中预测点g(目的地),能将点p2设定在比点g靠近前规定的距离α的地点。设定点p2后,位置检测部42定期地检测混合动力车辆10的当前位置,分析部30判断混合动力车辆10是否到达点p2(步骤s12)。
66.然后,分析部30判断出混合动力车辆10实际到达点p2后(是混合动力车辆10满足了向泊车地点的接近条件时,在满足了图4中的距离α以下时),目标设定部38使目标充电率下降至比基本目标充电率cm低的特殊目标充电率。
67.由此,在点p2以后,通过电池控制部18向放电侧控制电池16的充放电量,使得电池16的电能被主动地消耗,在本实施方式中,强制地指定电池16的充放电量的放电量,使得该充放电量的控制被高效地执行(步骤s13)。
68.即,例如如图5所示,在目标设定部38将目标充电率设定为任意的充电率(点x所示)时,电池控制部18控制电池16,使得与该点x所示的充电率对应的电池16的充放电量(范围y所示的部分的一部分)比通常时(目标设定部38不将目标充电率设定为任意的充电率时)的与点x所示的充电率对应的电池16的充放电量的上限值ym向放电侧变大。
69.更具体而言,在通常时,如图5中实线所示,被控制为与点x所示的充电率对应的电池16的充放电量。在目标设定部38将目标充电率设定为任意的充电率(点x所示)时,电池控制部18控制电池16,使得电池16的充放电量的放电侧的上限值成为范围y所示的部分的放电侧的上限值ul。
70.通过这样的控制,能在混合动力车辆10到达点g(目的地)之前,更主动地消耗电池16的电能,能在混合动力车辆10到达点g时,使实际的充电率(soc)高效且可靠地下降至图2所示的下限值cd附近(图5中点a所示的特殊目标充电率)。
71.需要说明的是,本实施方式中的“上限值ul”中包括上限值ul以下且接近上限值ul的值。此外,为了将与点a所示的特殊目标充电率对应的电池16的充放电量设为上限值ul,在点p2以后,不仅通过将电池16的电能优先用作行驶用的马达14的驱动力来实现,例如还通过对辅机电池(省略图示)等进行充电来实现。
72.此外,图4所示的由车辆用控制装置20进行的循环处理每隔一定间隔、例如几秒反复执行。此外,在未预计到长时间的泊车时和未到达点p2时,被设为通常时的控制(步骤s14)。就是说,如图5所示,例如在点x所示的任意的充电率下,电池16的充放电量被控制为成为其上限值ul与下限值dl之间的范围内。
73.此外,通常时的电池16的充放电量的上限值ul和下限值dl基于电池16的充电容量、混合动力车辆10的车速(将由发动机12产生的动力传递至车轮的传动轴的转速)以及驾驶特性(为驾驶员的加速器开度等,以下称为“来自驾驶员的请求”)来决定。
74.即,在通常时,不仅根据电池16的充电容量来控制充放电量,还根据混合动力车辆10的行驶状态(车速)和驾驶特性(来自驾驶员的请求)来控制充放电量。因此,即使目标设定部38将目标充电率设定为特殊目标充电率,也能以不会使电池16劣化的方式消耗电池16的电能。
75.此外,也可以在比目的地靠近前规定的时间t的地点设定点p2,而不是将点p2设定在比目的地靠近前规定的距离α的地点(也可以将接近条件设为时间t,而不是将接近条件设为距离α)。在该情况下,如图6所示,在步骤s12中,定期地检测当前时间,判断是否到了规定的时间t。此外,接近条件不仅可以根据距离α或时间t来决定,还可以根据驾驶特性(来自驾驶员的请求)等来决定。
76.此外,与管理中心50的通信信息仅为天气信息,因此能实时控制电池16的充放电量,并且能降低因通信中断引起的控制不良的风险。此外,当与管理中心50的通信信息中包括其他车信息时,能使拥堵信息等反映至充放电控制中,因此能高精度地到达目标充电率。
77.[第二实施方式]
[0078]
接着,对第二实施方式进行说明。在该第二实施方式中,如图7所示,向泊车地点的接近条件包括基于在过去混合动力车辆10向泊车地点进行了泊车时的数据而设定的距离校正值β。具体而言,首先,与第一实施方式同样地,分析部30预测各候选地的泊车时间,将被预计为长时间泊车的候选地预测为目的地(步骤s21)。
[0079]
然后,预测部32根据经由地和目的地来预测行驶路径,将点p2设定在比目的地靠近前规定的距离α的地点。设定点p2后,位置检测部42定期地检测混合动力车辆10的当前位置,分析部30判断混合动力车辆10是否到达点p2(步骤s22)。
[0080]
分析部30判断出混合动力车辆10实际到达点p2后,目标设定部38使目标充电率下降至比基本目标充电率cm低的特殊目标充电率。由此,在点p2以后,通过电池控制部18来控制电池16的充放电量,使得电池16的电能被更主动地消耗。即,强制地指定电池16的充放电量(步骤s23)。
[0081]
在此,当存在例如在目的地的周边连续下坡、在目的地的周边由于制冷或制热的请求等而发动机12持续驱动、来自驾驶员的请求大(始终需要发动机12的驱动力的车速、突然加速)等时,电池16的soc会难以减小。另一方面,当存在在目的地的周边连续上坡、在目的地的周边由于拥堵等而停车频度高、来自驾驶员的请求小(被设为始终能通过电能进行行驶的车速、加速度)等时,电池16的soc会过度减小。
[0082]
因此,在这样的情况下,根据按在过去进行了泊车时的每个目的地记录的切换充放电量(设为上限值ul)后的实际的充放电收支来计算其平均值(步骤s24)。然后,基于目标收支与实际收支之差来计算距离校正值β,该目标收支是基于到达目的地之前要减少的充电量而预先设定的,该实际收支是从平均值导出的(步骤s25)。
[0083]
这样计算出距离校正值β后,返回步骤s22,使该距离校正值β反映至作为发出充放电量的切换指示的基准的距离α。即,在步骤s22中,判断是否满足到泊车地点的距离为[距离α+距离校正值β]以下。需要说明的是,在soc难以减小时,可以提早切换充放电量。此外,在soc过度减小时,可以推迟切换充放电量。
[0084]
根据该第二实施方式,与接近条件中不包括距离校正值β的情况相比,能在混合动力车辆10到达泊车地点时,使电池16的充电率更高效且可靠地下降至目标充电率。需要说
明的是,在未预计到长时间的泊车时和未到达点p2时,与第一实施方式同样地,被设为通常时的控制(步骤s26)。
[0085]
此外,如图8所示,在步骤s84中,也可以根据按在过去进行了泊车时的每个目的地记录的到达时的soc来计算其平均值,而不是根据按在过去进行了泊车时的每个目的地记录的切换充放电量后的充放电收支来计算其平均值。然后,在步骤s25中,也可以基于设为目标的soc(特殊目标充电率)与从平均值导出的实际soc之差来计算距离校正值β。
[0086]
[第三实施方式]
[0087]
接着,对第三实施方式进行说明。在该第三实施方式中,如图9所示,基于在过去混合动力车辆10向泊车地点进行了泊车时的数据而设定的充放电量校正值γ被加到被设为上限值ul的充放电量上。具体而言,首先,与第一实施方式同样地,分析部30预测各候选地的泊车时间,将被预计为长时间泊车的候选地预测为目的地(步骤s31)。
[0088]
然后,预测部32根据经由地和目的地来预测行驶路径,将点p2设定在比目的地靠近前规定的距离α的地点。设定点p2后,位置检测部42定期地检测混合动力车辆10的当前位置,分析部30判断混合动力车辆10是否到达点p2(步骤s32)。
[0089]
分析部30判断出混合动力车辆10实际到达点p2后,目标设定部38使目标充电率下降至比基本目标充电率cm低的特殊目标充电率。由此,在点p2以后,通过电池控制部18来控制电池16的充放电量,使得电池16的电能被更主动地消耗。即,强制地指定电池16的充放电量(步骤s33)。
[0090]
在此,与第二实施方式同样地,根据按在过去进行了泊车时的每个目的地记录的切换充放电量(设为上限值ul)后的实际的充放电收支来计算其平均值(步骤s34)。然后,基于目标收支与实际收支之差来计算充放电量校正值γ,该目标收支是基于到达目的地之前要减少的充电量而预先设定的,该实际收支是从平均值导出的(步骤s35)。
[0091]
这样计算出充放电量校正值γ后,返回步骤s33,使该充放电量校正值γ反映至切换后(被设为上限值ul)的充放电量(将充放电量校正值γ加到切换后的充放电量上)。需要说明的是,在soc难以减小时增加放电量,在soc过度减少时减少放电量。即,如图10所示,在充放电量的上限值ul附近调整充放电量。
[0092]
根据该第三实施方式,与充放电量校正值γ未被加到被设为上限值ul的充放电量上的情况相比,能在混合动力车辆10到达泊车地点时,使电池16的充电率更高效且可靠地下降至目标充电率。需要说明的是,在未预计到长时间的泊车时和未到达点p2时,与第一实施方式同样地,被设为通常时的控制(步骤s36)。
[0093]
此外,如图11所示,在步骤s114中,也可以根据按在过去进行了泊车时的每个目的地记录的到达时的soc来计算其平均值,而不是根据按在过去进行了泊车时的每个目的地记录的切换充放电量后的充放电收支来计算其平均值。然后,在步骤s35中,也可以基于设为目标的soc(特殊目标充电率)与从平均值导出的实际soc之差来计算充放电量校正值γ。
[0094]
以上,基于附图对本实施方式的车辆用控制装置20、车辆用控制系统40、混合动力车辆10进行了说明,但本实施方式的车辆用控制装置20、车辆用控制系统40、混合动力车辆10并不限定于图示的内容,在不脱离本发明的主旨的范围内,能适当进行设计变更。例如,也可以使用gps功能,而不是使用汽车导航系统28。
[0095]
此外,在车辆用控制系统40中,也可以是,管理中心50内置有车辆用控制装置20中
包括的分析功能。即,也可以是,管理中心50包括分析部30和履历信息储存部34。由此,能降低混合动力车辆10侧的运算处理装置的规格。
[0096]
此外,在管理中心50中使用外部信息的情况下,存在:向混合动力车辆10侧发送所有数据,并在混合动力车辆10侧进行判断的方式;以及在管理中心50内判断结束后,仅将指令向混合动力车辆10侧发送的方式,但后者能降低混合动力车辆10侧的运算负担。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1