用于车辆转弯半径减小的系统和方法与流程

文档序号:30948532发布日期:2022-07-30 06:23阅读:165来源:国知局
用于车辆转弯半径减小的系统和方法与流程

1.示例实施例总体上涉及车辆控制技术,并且更具体地,涉及一种用于提供减小的车辆转弯半径的系统和方法。


背景技术:

2.具有相对较长的轴距的车辆(诸如卡车)通常也具有大的转弯半径。这可能使此类车辆难以在相对狭小的空间中停放或操纵。在某些状况下,此类车辆也可能难以完成u形转弯。较大的前轮驱动车辆也可能面临相似的问题。
3.因此,可能期望定义用于提供转弯半径减小的策略,所述策略可被实施以为这些车辆和其他车辆的驾驶员提供更令人满意的用户体验。


技术实现要素:

4.根据示例实施例,可提供一种用于车辆的车辆控制系统。所述系统可包括控制器和扭矩控制模块,所述扭矩控制模块可操作地联接到所述控制器以及所述车辆的前车桥的前轮和所述车辆的后车桥的后轮。所述控制器还可能可操作地联接到车辆的部件和/或传感器,以接收包括车轮转速和方向盘角度的信息。扭矩控制模块可以响应于控制器的控制而操作以在转弯期间向内侧后轮施加负扭矩,并且在转弯期间向前车桥施加正扭矩以补偿施加到内侧后轮的负扭矩,从而基于所述方向盘角度和所述车辆速度而减小转弯半径。
5.在另一示例实施例中,提供了一种在驾驶员辅助模式下提供转弯半径减小的自动应用的方法。所述方法可包括:接收选择转弯半径减小模式的模式选择;接收方向盘角度和车辆速度信息以确定在转弯期间是否满足转弯半径减小标准;响应于满足所述转弯半径减小标准,而向内侧后轮施加负扭矩;以及向车辆的前轮施加正扭矩以补偿施加到内侧后轮的负扭矩。
附图说明
6.已经如此概括地描述了本发明之后,现在将参考附图,所述附图不一定按比例绘制,并且在附图中:
7.图1示出了根据示例实施例的车辆控制系统的框图;
8.图2示出了图1的根据示例实施例的车辆控制系统的一些部件的框图;
9.图3示出了根据示例实施例的执行减小半径转弯的前轮驱动车辆;
10.图4示出了在正常转弯期间和在采用示例实施例的制动转向期间的电池电动车辆行迹的曲线图;
11.图5示出了与图4不同的电池电动车辆,所述电池电动车辆根据示例实施例进行正常转弯和减小半径转弯;并且
12.图6示出了根据示例实施例的控制车辆的方法。
具体实施方式
13.现在将在下文参考附图更全面地描述一些示例实施例,在附图中示出了一些但不是全部示例实施例。实际上,本文描述和描绘的示例不应被解释为限制本公开的范围、适用性或配置。相反,提供这些示例实施例以使得本公开将满足适用的法律要求。相同的附图标记始终指代相同的元件。此外,如本文所使用的,术语“或”将被解释为逻辑运算符,每当其操作数中的一个或多个为真时,其结果为真。如本文所使用的,可操作的联接应被理解为涉及直接或间接连接,在任一种情况下,所述连接实现可操作地彼此联接的部件的功能互连。
14.如上所述,可能期望限定实现减小大型车辆的转弯半径的策略。也就是说,可能在大型车辆情境中起作用的策略也可能对其他车辆起作用。因此,示例实施例不严格限于在大型车辆中的应用。
15.可能够使用制动扭矩来经由通常被称为制动转向或制动辅助转弯的技术来辅助转弯半径减小。然而,可能期望提供一种能够改善制动转向或制动辅助转弯的性能的系统。示例实施例可通过实现对在转弯期间施加到前车桥的车轮和后车桥的车轮的正扭矩和负扭矩两者的策略控制来提供此种改进。通过在转弯期间向后内侧车轮施加负扭矩,并且向前轮施加正扭矩以拉动车辆通过转弯处,不仅可减小车辆转弯半径,而且还可在应用转弯半径减小期间改善用户体验。就此而言,正扭矩可抵消负扭矩,以使得不会注意到扭矩、速度或操纵性的总体减小。实际上,可将正扭矩的前馈值施加到前轮,以补偿在转弯期间施加到内侧后轮的负扭矩。示例实施例可提供对扭矩施加(正扭矩和负扭矩两者)的策略控制,以在转弯半径本身的量变以及与采用所述策略的体验相关联的质变两者方面改善转弯半径减小。
16.因此,一些示例性实施例可提供一种系统,所述系统不仅能够提供车辆转弯半径的减小,而且还能够以对驾驶员来说无缝的自动方式提供转弯半径的减小。就此而言,例如,当被驾驶员启用时,示例实施例的系统的控制器可被配置成在急转弯期间自动地向后内侧车轮施加负扭矩,并且向前轮施加正扭矩。在一些情况下,可基于或以其他方式并入或考虑车轮滑移(slip)来确定此种平衡扭矩的施加,所述车轮滑移是某些车轮之间的转速差的度量。例如,可确定后内侧车轮的车轮滑移,并且可在应用转弯半径减小策略期间进行控制。
17.图1示出了示例实施例的控制系统100的框图。控制系统100的部件可以结合到车辆110中(例如,经由可操作地联接到车辆110的底盘、车辆110的各种部件和/或车辆110的电子控制系统)。值得注意的是,虽然图1的部件可以可操作地联接到车辆110,但是应当理解,这种连接可以是直接的或间接的。此外,控制系统100的部件中的一些可经由与底盘或其他电子和/或机械系统或部件的其他部件的中间连接来连接到车辆110。
18.控制系统100可具有正常操作模式,所述正常操作模式包括呈控制踏板和方向盘(或手轮)形式的输入装置。踏板可包括枢转地安装到车辆110的地板并且可由操作员125操作的制动踏板和加速踏板。制动踏板通常可用于提供用于控制制动扭矩的输入,并且加速踏板可用于提供用于控制推进扭矩的输入。然而,正常操作模式可能并不适用于所有情况。此外,还可能存在可选择的其他操作模式,包括一个或多个越野驾驶员辅助模式、停车模式、转弯辅助模式等。因此,一些示例实施例的控制系统100还可包括用户接口120。操作员125可操作用户接口120,所述用户接口可包括或定义模式选择器以转换出正常操作模式并
进入其他操作模式中的任何一个。在一个示例实施例中,可由操作员125经由用户接口120选择的其他操作模式可包括转弯辅助模式,其中可发起转弯半径减小,如下面更详细地描述的。
19.值得注意的是,虽然术语转弯辅助模式在本文中通常被称为用以执行示例实施例的模式,但是其中可应用示例实施例的模式的名称并不重要,并且当然不是限制性的。如上所述,其他术语,如制动转向模式、停车模式或其中应用本文所描述的功能性的任何其他模式,也是可能的。
20.示例实施例的控制系统100还可包括扭矩控制模块130,所述扭矩控制模块可能是控制器140的一部分或以其他方式可操作地联接到所述控制器。扭矩控制模块130可被配置成基于来自车辆110的控制器140、用户接口120或其他部件中的任何一个或全部的输入而确定单独地、成对地或共同地(例如,取决于传动系状态和/或车辆类型)施加到车轮的正扭矩(例如,推进扭矩)和/或负扭矩(例如,制动扭矩、再生扭矩等),如本文所述。在一些情况下,控制器140可能是车辆110的电子控制系统的一部分,所述电子控制系统被配置成执行与推进和制动控制或性能管理相关或不相关的其他任务。然而,在一些情况下,控制器140可能是专用或独立的控制器。
21.在示例实施例中,控制器140可从车辆100的各种部件或子总成150接收用于确定车辆状态的信息。另外或替代地,可包括可操作地联接到部件或子总成150的各种传感器,并且可向控制器140提供用于确定车辆状态的输入。此类传感器可能是传感器网络160的一部分,并且传感器网络160的传感器可经由车辆通信总线(例如,控制器局域网(can)总线)165可操作地联接到控制器140(和/或部件或子总成150)。
22.部件或子总成150可包括例如车辆的方向盘、车辆110的制动器总成、推进系统和/或车轮总成。制动器总成可被配置成基于由控制器140和/或扭矩控制模块130确定的制动扭矩而向车辆110的制动部件(例如,摩擦制动器和诸如再生制动等电气制动方法)提供制动输入。在一些情况下,制动器总成可包括电动制动助力器(ebb)系统,所述电动制动助力器系统使用电动制动助力器来感测驾驶员输入并减少制动所需的踏板压力的大小。推进系统可包括燃气发动机、电动马达或任何其他合适的推进装置。
23.控制器140和/或扭矩控制模块130可被配置成确定正扭矩输入和负扭矩输入以提供给车辆110的传动系170的部件(例如,驱动轴、差速器、车桥轴等)和车轮180。因此,例如,扭矩控制模块130可确定用于提供给推进系统以经由传动系170向车辆110的车轮总成的车轮180施加推进扭矩的正扭矩输入,并且确定用于提供给车轮180的呈制动扭矩、再生扭矩等形式的负扭矩输入。此外,传感器网络160的可以可操作地联接到制动器总成和/或车轮总成的一个或多个对应传感器可提供与制动扭矩、制动扭矩速率、车辆速度、车辆加速度、单独车轮转速、前轮/后轮转速、车辆俯仰等有关的信息。部件或子总成150的其他示例和/或传感器网络160的对应传感器可提供与横摆(yaw)、侧向g力、方向盘角度、节气门位置、与底盘和/或车辆控制选择相关联的选择器按钮位置等有关的信息。
24.因此,例如,控制器140可能够接收可能涉及或指示与车辆状态相关联的不同状况或条件的众多不同的参数、指示和其他信息。控制器140还可接收指示操作员125相对于控制车辆110的操作的各方面的意图的信息,并且然后被配置成与一个或多个控制算法的执行相关联地使用所接收的信息,所述一个或多个控制算法可用于向扭矩控制模块130提供
指令,以便控制向车辆110的车轮总成的车轮施加正扭矩和负扭矩。
25.在示例实施例中,操作员125可使用用户接口120来选择转弯辅助模式。用户接口120可由车辆110中的交互式显示器实施,并且因此可能是提供在显示器上的软开关。然而,在其他示例中,用户接口120可以包括位于车辆110的驾驶舱中的硬开关、按钮、钥匙或其他可选择的操作器。转弯辅助模式的选择可对应地启动扭矩控制模块130以基于由部件或子总成150和/或传感器网络160的对应传感器提供的信息而提供本文所描述的自动转弯控制。更具体地,对转弯辅助模式的选择可实现基于车辆速度、方向盘位置的转弯能力的控制以及对内侧后轮的负扭矩的控制,同时向前轮提供前馈抵消正扭矩。下面将参考图2更详细地描述扭矩控制模块130的操作。
26.如上所述,当扭矩控制模块130活动并且已经启动自动转向控制时,扭矩控制模块130的输出可被提供给车辆110的传动系170的部件。因此,控制器140可接收信息以使控制器140能够确定车辆110的传动系170的状态,或者所涉及的车辆类型的具体传动系特性可被编程到可由控制器140执行的算法中。传动系170可包括前车桥和后车桥,以及前车桥和后车桥的驱动部件和/或在它们之间提供联接的部件。因此,例如,传动系170可包括可操作地联接前车桥和后车桥(和/或其驱动部件)的差速器(例如,前轮驱动车辆的前差速器)以及齿轮和/或离合器部件。在一些示例中,诸如当车辆110是电池电动车辆(bev)时,传动系170可包括用于每个车桥或甚至每个车轮的单独电动马达。
27.现在参考图2,将更详细地描述控制器140和扭矩控制模块130的操作。图2更详细地示出了控制系统100的各种部件的框图。就此而言,例如,图2示出了控制器140与扭矩控制模块130之间相对于由此接收的信息(例如,来自传感器网络160、来自部件/子总成150中的各者和/或来自用户接口120)的示例交互。控制器140处的处理电路(例如,处理器210和存储器220)可通过运行一个或多个控制算法来处理接收到的信息。控制算法可包括可以由存储器220存储以供处理器210检索和执行的指令。在一些情况下,存储器220还可存储一个或多个表(例如,查找表),并且可使用表中的信息和/或如本文所述的信息来执行各种计算和/或应用。
28.处理器210可被配置成串行或并行地执行控制算法。然而,在示例实施例中,处理器210可被配置成并行地(例如,同时地)且基本上实时地执行多个控制算法。控制算法可被配置成基于接收到的/生成的关于车辆部件的具体条件的信息而执行各种计算。因此,控制算法可基于接收到的信息而执行各种功能,并且生成输出以驱动对施加在车辆110的车轮处(单独地或成对地)的扭矩的控制。扭矩控制模块130本身可以是控制算法,或者可包括呈功能模块(或子模块)形式的控制算法,所述功能模块(或子模块)被配置成执行它们被配置用于以本文所描述的方式与控制车辆110相关的具体功能。因此,例如,控制器140实际上可响应于执行控制算法而用作扭矩控制模块130。然而,在其他情况下,扭矩控制模块130可以是控制器140的部件或模块,或者是完全单独的部件(例如,包括其自身的对应处理电路)。
29.在示例实施例中,扭矩控制模块240可包括转弯增强器或横摆发生器230,所述转弯增强器或横摆发生器限定负扭矩值232以(例如,经由车辆110的制动系统236)施加到内侧后轮234以在转弯期间为车辆110生成增强的横摆。横摆发生器230可被配置成仅当已经进行模式选择240以将车辆110(例如,经由其控制器140)置于转弯辅助模式(或其他相似模式)时以及当已经满足某些其他合格条件(例如,触发事件或触发条件)时才生成负扭矩值
232。例如,横摆发生器230还可接收包括车辆速度242和方向盘角度244的输入。转弯辅助模式可例如仅可在低于某一速度或阈值速度(例如,低于每小时12英里(mph)或另一合适的速度值)下操作。此外,在一些情况下,转弯辅助模式可仅在足够量值的转弯(在由车辆速度242的阈值限定的低速下)时才可操作(并且因此仅横摆发生器230活动)。例如,横摆发生器230可仅在方向盘已经沿一个方向或另一方向转动到最大程度(或接近最大角度的预定角度)时操作。因此,在一些情况下,方向盘角度244和车辆速度242可以仅是用于横摆发生器230的操作的启用因素或触发标准。然而,在其他情况下,横摆发生器230可基于车辆速度242和方向盘角度244中的一个或多个而生成负扭矩值232。因此,例如,扭矩值的表可被索引到对应的车辆速度242的值和/或方向盘角度244的值,以确定负扭矩值232的大小。
30.在一些实施例中,替代地或另外地,可基于额外或其他标准而生成负扭矩值232。例如,在一些情况下,可提供滑移表250以便生成滑移值252。滑移表250可包括基于相应输入值而确定的一系列输出值。基于相应的输入值,可参考滑移表250以便确定滑移值230。如图2中所示,滑移表250可考虑车辆速度242和/或方向盘角度244,以便确定滑移值252。滑移值252本身可被限定在为刚好低于峰值轮胎摩擦系数(其可被称为轮胎mu)的值。在此类示例中,如果选择了转弯辅助模式,则如果车辆速度242低于阈值速度(例如,12mph)并且方向盘转动到最大角度达给定时间段(例如,固持在锁定状态,从而指示驾驶员正在提供转向扭矩以将车轮固持抵靠端部止动件达至少给定时间段),则横摆发生器230可使用滑移值252来限定要施加到内侧后轮234的负扭矩值232。
31.因为向内侧后轮234施加负扭矩值232将在进行中的转弯期间增加车辆110的横摆率,所以可根据需要减小车辆110的转弯半径。然而,提供负扭矩值232(例如,仅经由再生制动或向内侧后轮234施加摩擦制动)将倾趋向于在因而发生的转弯期间使车辆110减速,驾驶员会感觉到减速感,并且因此使转弯的感觉不那么无缝。要生成更无缝的转弯,示例实施例可经由补偿器264向车辆110的推进系统262提供正扭矩值260。补偿器264可被配置成生成前馈扭矩值以抵消负扭矩值232,从而使转弯更加无缝。可将正扭矩值260提供给推进系统262,以例如向车辆110的前车桥或前轮266施加动力。因此,例如,车辆110的前轮266可拉动车辆110通过转弯处,而内侧后轮234具有施加到其上的负扭矩以增加可生成的横摆率,并且由此还在增加转弯率的同时避免转弯期间的任何明显的速度变化。
32.在示例实施例中,补偿器264可接收指示在内侧后轮234处实际施加的负扭矩的大小的输入值。例如,补偿器264可接收在内侧后轮234处施加的制动压力268的指示。因此,由补偿器264生成的正扭矩值260可与在内侧后轮234处施加的制动压力268成比例。因此,正扭矩值260和负扭矩值232可不被设置为相等的值,而是相反,对于给定状况,正扭矩值260可被设置为趋向于使由负扭矩值232生成的减速不那么明显,同时仍然增加转弯速率(例如,经由增加车辆110的横摆率)。然而,在前轮266中的每一个具有单独电动马达的示例中(例如,在一些bev的情况下),所述比率可被设置为一比一。否则,例如,如果制动压力为1000nm,则正扭矩值260的大小可能低于1000nm。
33.如图2中所示,车辆110的制动踏板270可用于向制动系统236(而不是向两个车轮)提供制动输入,并且加速踏板272可用于向车辆110的推进系统262提供推进输入。除了由本文描述的扭矩控制模块130自动提供的输入之外,还可存在这些输入。因此,就驾驶员操作制动踏板270和加速踏板272中的任一者或两者而言,扭矩控制模块130可以与手动输入以
叠加方式提供其对正扭矩和负扭矩的自动修改,同时还响应于经由驾驶员的手动输入做出的改变。
34.值得注意的是,车辆的推进系统262可采用众多不同的形式。图3至图5各自示出了具有在一些示例实施例中可采用的形式的对应的不同示例。首先参考图3,示出了在进行转弯时的前轮驱动车辆300(作为车辆110的一个示例)。示出了正常(未修改的)转弯半径310以与修改的转弯半径320进行比较。
35.前轮驱动车辆300具有附接了前轮334的前差速器330和前车桥332。响应于上面讨论的正扭矩值260,将来自前轮驱动车辆300的驱动轴的动力提供给前轮334,同时在内侧后制动器336中提供负扭矩值232。
36.经修改的转弯半径320示出了通过在转弯期间向内侧后轮340施加负扭矩值232可预期的转弯半径的预期减小。值得注意的是,在该示例中,通过将内侧后轮340的转速与外侧后轮342的转速进行比较来确定滑移。但是在其他示例中,可使用确定滑移的其他方式。如图3中所示,施加到前轮334的正扭矩值260拉动车辆300通过转弯处,而施加到内侧后轮340的负扭矩值232增加横摆率,从而致使以比正常转弯半径310小的经修改的转弯半径320转弯。
37.现在参考图4,示出了进行转弯时的bev 400(作为车辆110的另一示例)。示出了正常(未修改的)转弯半径410以与修改的转弯半径420进行比较。bev 400具有前电动马达430,所述前电动马达驱动前车桥432(以及与其附接的前轮434);以及后电动马达440,所述后电动马达驱动后车桥442(以及与其附接的后轮444)。bev 400还具有控制器450(例如,控制器140的示例),所述控制器控制向前车桥432和后车桥442施加动力。在示例实施例中,控制器450可对平衡对前电动马达430和后电动马达440的动力施加的控制(例如,经由执行管理软件应用)。换句话说,控制器450可提供前车桥432与后车桥442之间的连接(至少从控制角度来看)。
38.前轮434和后轮444中的每一个还可具有与其相关联的对应的摩擦制动器和/或再生制动器总成。所展示的用于转弯的内侧后轮包括制动器总成460,所述制动器总成可被单独地操作以提供上面讨论的负扭矩值232。当期望减小的转弯半径并且满足了上面参考图2描述的条件时,上述扭矩控制模块130可按与上述描述相似的方式操作。然而,因为前车桥432和后车桥442是连接的(例如,经由由控制器450提供的软件控制),所以前车桥432和后车桥442最初可在发起具有减小的转弯半径的转弯之前(或在其执行期间)被断开(例如,由控制器450)。因此,控制器450在后轮444中的内侧一个车轮处将负扭矩值232施加到制动器总成460之前断开前车桥432和后车桥442。控制器450还管理经由前电动马达430将正扭矩值260施加到前轮434以补偿负扭矩值232。
39.经修改的转弯半径420示出了通过在转弯期间经由制动器总成460向后轮444中的内侧一个车轮施加负扭矩值232可预期的转弯半径的预期减小。如图4中所示,施加到前轮434的正扭矩值260拉动车辆400通过转弯处,而经由制动器总成460施加到后轮444中的内侧一个车轮的负扭矩值232增加横摆率,从而致使以比正常转弯半径410小的经修改的转弯半径420转弯。
40.现在参考图5,示出了进行转弯时的bev 500(作为车辆110的另一示例)。示出了正常(未经修改的)转弯半径510以与经修改的转弯半径520进行比较。bev 500在前车桥532上
具有用于前轮534中的每个相应的前轮的前电动马达530的单独实例。bev 500还在后车桥542上具有用于后轮544中的每个相应的后轮的后电动马达540的单独实例。bev 400还具有控制器550(例如,控制器140的示例),所述控制器控制向前车桥532和后车桥542施加动力。在示例实施例中,控制器550可执行对平衡对前电动马达530和后电动马达540的动力施加的控制(例如,经由执行管理软件应用)。换句话说,控制器550可提供前车桥532与后车桥542之间的连接(至少从控制角度来看)。
41.前轮534和后轮544中的每一个还可具有与其相关联的对应的摩擦制动器和/或再生制动器总成。所展示的用于转弯的内侧后轮包括制动器总成560,所述制动器总成可被单独地操作以提供上面讨论的负扭矩值232。当期望减小的转弯半径并且满足了上面参考图2描述的条件时,上述扭矩控制模块130可按与上述描述相似的方式操作。然而,因为前车桥532和后车桥542是连接的(例如,经由由控制器550提供的软件控制),所以前车桥532和后车桥542最初可在发起具有减小的转弯半径的转弯之前(或在其执行期间)被断开(例如,由控制器550)。因此,控制器550在后轮544中的内侧一个车轮处将负扭矩值232施加到制动器总成560之前断开前车桥532和后车桥542。控制器550还管理经由前电动马达530将正扭矩值260施加到前轮534以补偿负扭矩值232。
42.经修改的转弯半径520示出了通过在转弯期间经由制动器总成560向后轮544中的内侧一个车轮施加负扭矩值232可预期的转弯半径的预期减小。如图4中所示,施加到前轮534的正扭矩值260拉动bev 500通过转弯处,而经由制动器总成560施加到后轮544中的内侧一个车轮的负扭矩值232增加横摆率,从而致使以比正常转弯半径510小的经修改的转弯半径520转弯。
43.图6示出了在驾驶员辅助模式下提供转弯半径减小的自动应用的一种示例方法的框图。所述方法可包括在操作600处接收选择转弯半径减小模式的模式选择。所述方法还可包括在操作610处接收方向盘角度和车辆速度信息以确定在转弯期间是否满足转弯半径减小标准。响应于满足转弯半径减小标准,所述方法还可包括在操作620处向内侧后轮施加负扭矩,并且在操作630处向车辆的前轮施加正扭矩以补偿施加到内侧后轮的负扭矩。在一些实施例中,(例如,如果车辆110是bev),直到在操作615处断开后车桥和前车桥,才可能实现负扭矩的施加。
44.因此,示例实施例还可以包括用于减小车辆的转弯半径的车辆控制系统,所述车辆控制系统可包括控制器和扭矩控制模块,所述扭矩控制模块可操作地联接到所述控制器以及所述车辆的前车桥的前轮和所述车辆的后车桥的后轮。所述控制器还可以可操作地联接到车辆的部件和/或传感器,以接收包括车轮转速和方向盘角度的信息。扭矩控制模块可以响应于控制器的控制而操作以在转弯期间向内侧后轮施加负扭矩,并且在转弯期间向前车桥施加正扭矩以补偿施加到内侧后轮的负扭矩,从而基于所述方向盘角度和所述车辆速度而减小转弯半径。在各种示例实施例中,方向盘角度和车辆速度可能仅仅是启用的,或者可规定补偿值或单独扭矩值。不需要以1:1的比率提供补偿,虽然在一些情况下可能需要。在许多情况下,可施加比负扭矩的大小更少的正扭矩,但是更多的正扭矩也是可能的。
45.一些实施例的系统可包括额外特征、修改、扩充等,以达成进一步的目标或增强系统的性能。可按彼此任意组合的方式添加额外特征、修改、扩充等。以下是各种额外特征、修改和扩充的列表,所述各种额外特征、修改和扩充可各自单独地添加或以彼此任意组合的
方式添加。例如,控制器可被配置成以多种操作员可选择的操作模式中的任何一种方式控制车辆操作,并且扭矩控制模块可被配置成响应于操作员对操作模式中的对应一个的选择以及检测到对触发事件而在转弯期间施加制动扭矩。在示例实施例中,触发事件可包括检测到方向盘角度处于对应于方向盘的旋转极限的最大角度,以及检测到车辆速度低于阈值速度(例如,12mph)。在一些情况下,当车辆是前轮驱动的燃气动力车辆时,负扭矩可以是由制动器总成施加的制动扭矩,所述制动器总成包括仅施加到内侧后轮的摩擦制动器。在示例实施例中,车辆可以是电池电动车辆,并且控制器可在将负扭矩施加到内侧后轮之前将前车桥与后车桥断开。在一些情况下,负扭矩可以是由制动器总成施加的制动扭矩,所述制动器总成包括仅施加到内侧后轮的摩擦制动器。在示例实施例中,负扭矩可以是由包括再生制动器的制动器总成施加的再生扭矩。在一些情况下,可将正扭矩施加到向前轮中的两个提供动力的前电动马达。在示例实施例中,正扭矩可施加到向前轮中的一个提供动力的第一前电动马达和向前轮中的另一个提供动力的第二前电动马达。在一些情况下,控制器可基于针对内侧后轮确定的滑移值而施加负扭矩。在示例实施例中,滑移值可以是基于车辆速度的内侧后轮的峰值摩擦系数。在一些情况下,可基于施加到内侧后轮的制动压力而确定正扭矩的值。在示例实施例中,可与由驾驶员经由车辆的制动踏板或加速踏板发起的其他扭矩施加以叠加方式(additively)自动地施加正扭矩和负扭矩。
46.受益于前述描述和相关联附图中呈现的教示的本发明所属领域的技术人员将会想到本文阐述的本发明的许多修改和其他实施例。因此,应当理解,本发明不限于所公开的具体实施例,并且修改和其他实施例意在包括在所附权利要求的范围内。此外,虽然前述描述和相关联的附图在元件和/或功能的某些示例性组合的背景下描述了示例性实施例,但是应当了解,在不脱离所附权利要求的范围的情况下,替代实施例可提供元件和/或功能的不同组合。就此而言,例如,如可能在所附权利要求中的一些中阐述的,也可设想与上文明确描述的那些不同的元件和/或功能的组合。在本文描述了优点、益处或问题的解决方案的情况下,应当了解,此类优点、益处和/或解决方案可适用于一些示例实施例,但不一定适用于所有示例实施例。因此,本文描述的任何优点、益处或解决方案不应被视为对于所有实施例或本文要求保护的实施例是关键的、必需的或必要的。虽然本文采用了具体的术语,但是它们仅用于一般且描述性意义,而不是出于限制的目的。
47.根据本发明,提供了一种用于减小车辆的转弯半径的车辆控制系统,所述车辆控制系统具有:控制器,所述控制器可操作地联接到所述车辆的部件和/或传感器以接收包括车轮转速和方向盘角度的信息;以及扭矩控制模块,所述扭矩控制模块可操作地联接到所述控制器以及所述车辆的前车桥的前轮和所述车辆的后车桥的后轮,所述扭矩控制模块可响应于所述控制器的控制而操作以在转弯期间向内侧后轮施加负扭矩,并且在转弯期间向前车桥施加正扭矩以补偿施加到内侧后轮的负扭矩,从而基于方向盘角度和车辆速度而减小转弯半径。
48.根据实施例,控制器被配置成以多种操作员可选择的操作模式中的任何一种方式控制车辆操作,并且其中扭矩控制模块被配置成响应于操作员对操作模式中的对应一个的选择以及检测到触发事件而在转弯期间施加制动扭矩。
49.根据实施例,触发事件包括检测到方向盘角度处于对应于方向盘的旋转极限的最大角度,以及检测到车辆速度低于阈值速度。
50.根据实施例,负扭矩是由制动器总成施加的制动扭矩,所述制动器总成包括仅施加到内侧后轮的摩擦制动器。
51.根据实施例,车辆是电池电动车辆,并且其中控制器在将负扭矩施加到内侧后轮之前将前车桥与后车桥断开。
52.根据实施例,负扭矩是由制动器总成施加的制动扭矩,所述制动器总成包括仅施加到内侧后轮的摩擦制动器。
53.根据实施例,负扭矩是由包括再生制动器的制动器总成施加的再生扭矩。
54.根据实施例,将正扭矩施加到向两个所述前轮提供动力的前电动马达。
55.根据实施例,将正扭矩施加到向前轮中的一个提供动力的第一前电动马达和向前轮中的另一个提供动力的第二前电动马达。
56.根据实施例,控制器基于针对内侧后轮确定的滑移值而施加负扭矩。
57.根据实施例,滑移值是基于车辆速度的内侧后轮的峰值摩擦系数。
58.根据实施例,基于施加到内侧后轮的制动压力而确定正扭矩的值。
59.根据实施例,与由驾驶员经由车辆的制动踏板或加速踏板发起的其他扭矩施加以叠加方式自动地施加正扭矩和负扭矩。
60.根据本发明,一种以驾驶员辅助模式提供转弯半径减小的自动应用的方法包括:接收选择转弯半径减小模式的模式选择;接收方向盘角度和车辆速度信息以确定在转弯期间是否满足转弯半径减小标准;响应于满足所述转弯半径减小标准,而向内侧后轮施加负扭矩;以及向车辆的前轮施加正扭矩以补偿施加到内侧后轮的负扭矩。
61.在本发明的一个方面中,车辆是电池电动车辆,并且其中在将负扭矩施加到内侧后轮之前将前车桥与后车桥断开。
62.在本发明的一个方面中,施加负扭矩包括经由制动器总成施加制动扭矩,所述制动器总成包括仅施加到内侧后轮的摩擦制动器。
63.在本发明的一个方面中,施加负扭矩包括仅向内侧后轮施加再生扭矩。
64.在本发明的一个方面中,基于施加到内侧后轮的制动压力而确定正扭矩的值。
65.在本发明的一个方面中,施加负扭矩包括基于针对内侧后轮确定的滑移值而施加负扭矩。
66.在本发明的一个方面中,滑移值是基于车辆速度的内侧后轮的峰值摩擦系数。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1