运输器的制作方法

文档序号:13881591阅读:267来源:国知局
运输器的制作方法

本发明涉及电池装卸领域,更具体而言,其涉及一种电动汽车车用电池更换的换电运输器。



背景技术:

随着传统化石能源消耗所带来的供应压力以及尾气污染,传统燃油汽车的发展进入了迟滞期。针对于此,出于对绿色能源前景的看好,节能环保的电动汽车在近几年呈现出井喷式发展。目前,在电动汽车开发过程中,由于受到当前电池技术的限制,电池容量不足及充电时间较长是现阶段不可回避的问题。为解决此类技术问题,一方面,加大了对电池技术自身的研发投入;另一方面,也加大了对电池周边技术的开发。例如,电池更换即为一种极速、方便、安全的办法。

具体而言,换电(也即电池更换)是指电动汽车通过换电设备将车辆的动力电池取下,并更换另一组动力电池到电动汽车上的补能方式。换电站是为电动汽车的动力电池实现换电的场所,其具有充电、热管理、通信、监控等功能。换电站中可以预先承载一定数量电池箱,并在电池仓中采用专用充电电缆与充电装置快速连接及充电。

在换电过程中,不可避免地需要用到一类电池转运设备,来将电池从电池仓取出,并运送到可以给电动汽车换电的位置。在实际应用过程中发现,此类取换电车除去搭载换电装置进行电池的拆装之外,一般还需要具备全向输运功能。此处提及的全向主要指x、y两个方向,即与取换电车行进方向相同以及与行进方向相垂直。

实现全向运动的方式有很多种,例如:应用提升和单向传输机构来实现x、y方向运动的解耦;又如,采用辊筒和与辊筒运动方向垂直的叉车;再如采用朝单一方向运动的辊筒及可全向运动的底盘。但这些采用运动解耦方式的换电运输器均会增加机构复杂度。如何能够在完成全项运输及换电功能的同时,尽可能地简化结构设计,成为亟待解决的技术问题。



技术实现要素:

本发明的目的在于提供一种具有全向传输功能的运输器。

本发明的另一目的在于提供一种具有全向传输功能的用于更换电池的运输器。

为实现本发明的目的,根据本发明的一个方面,还提供一种运输器,其特征在于,包括:承载部,其用于承载待运输部件;全向传输组件,其包括多个设置在所述承载部上的传输机构,各个所述传输机构分别用于提供朝向设定方向的驱动力,待运输部件沿所述多个传输机构的驱动力合力方向运动;以及控制器,其用于控制多个所述传输机构的启停和/或正反转来沿设定的合力方向驱动待运输部件。

可选地,所述传输机构为麦克纳姆轮。

可选地,各个所述麦克纳姆轮分别靠近所述承载部的各个边缘布置。

可选地,所述承载部构造成矩形,且所述全向传输组件包括至少两个所述麦克纳姆轮;其中,两个所述麦克纳姆轮分别沿纵向或沿横向靠近所述承载部的边缘布置。

可选地,所述承载部构造成矩形,且所述全向传输组件包括至少四个所述麦克纳姆轮;其中,各个所述麦克纳姆轮分别靠近所述承载部的四个角布置。

可选地,所述全向传输组件还包括多个万向轮,多个所述万向轮分别靠近所述承载部中心及边缘布置。

可选地,靠近所述承载部边缘布置的万向轮位于两个相邻的麦克纳姆轮之间。

可选地,还包括沿所述承载部边缘设置的边缘挡块;所述边缘挡块具有止挡位置及通行位置,在所述止挡位置,所述边缘挡块构造成阻止待运输部件通过;在所述通行位置,所述边缘挡块构造成允许待运输部件通过。

可选地,所述边缘挡块与所述承载部边缘枢接;在所述止挡位置,所述边缘挡块枢转至高于所述承载部;在所述通行位置,所述边缘挡块枢转至低于所述承载部。

可选地,还包括:移动部,其用于驱动所述承载部移动。

可选地,所述合力方向沿所述运输器的承载部纵向或横向。

可选地,所述传输机构为全向舵轮。

为实现本发明的目的,根据本发明的另一个方面,还提供另一种运输器,所述运输器用于运输电动汽车的待更换电池。

可选地,所述承载部具有与所述待更换电池相匹配的尺寸。

根据本发明的运输器,通过设置全向传输组件及配置对应的控制系统,以较为简单的机械结构来实现了对待更换部件的全向传输。

附图说明

图1是本发明的运输器的一个实施例的俯视图。

图2是图1中的运输器的侧视图。

图3是图1中的运输器的正视图。

图4是本发明的运输器的另一个实施例的俯视图。

图5是运输器中的限位挡块处于止挡位置的示意图。

图6是运输器中的限位挡块处于通行位置的示意图。

图7是本发明的运输器沿纵向正向传输的示意图。

图8是本发明的运输器沿横向正向传输的示意图。

具体实施方式

根据本发明的构想,在此结合附图提供一种运输器的实施例。为便于描述,在多张附图中引用到x、y、z作为空间坐标系,其中,x指示沿运输器横向;y指示沿运输器纵向,且z指示沿运输器竖向。

参见图1至图3,其示出了一种运输器100。该运输器100包括作为负重主体的承载部120,其用于在运输过程中承载待运输部件。且最为关键地,该运输器100还包括全向传输组件110,该全向传输组件110包括多个设置在承载部120上的多种形式的传输机构,这些传输机构分别用于提供朝向设定方向的驱动力,并使得待运输部件沿多个传输机构的驱动力合力方向运动。为实现前述功能,该传输机构可具有多种实现形式。例如,可将这些传输机构设置在承载部上的不同位置并设定好其施力方向。此外,该运输器100还应具有控制器,其用于控制多个传输机构的启停和/或正反转来沿设定的合力方向驱动待运输部件。例如,合力方向可以是沿运输器的承载部纵向或横向。在此种布置下,本构想的运输器省却了对多种机械结构的力矩耦合,而通过设置全向传输组件及配置对应的控制系统,以较为简单的机械结构来实现了对待更换部件的全向传输。

在此,作为全向传输组件的一种具体实现形式,本实施例中采用自身结构已经较为成熟稳定的麦克纳姆轮作为传输机构。而本构想的重点将在于麦克纳姆轮在零部件运输中的应用及其在运输器上的具体设置。

具体而言,继续参见图1至图3,可发现图中的运输器采用了四个麦克纳姆轮111a、111b、111c及111d,且四个麦克纳姆轮111a、111b、111c及111d分别靠近矩形承载部120的四个角落设置。此种布置方式,确保了待运输部件在整个转运过程中都能接触到麦克纳姆轮并受其驱动。例如,假设待运输部件沿y轴负方向被转移出运输器时,在驱动过程中,其将逐渐与麦克纳姆轮111a及111b脱离接触,并仅依靠设置在下方角落的麦克纳姆轮111c及111d来实现随后的驱动。其将保持与麦克纳姆轮111c及111d的接触,直至离开运输器。

根据前述实施例可知,此种设计思路主要在于确保待运输部件在整个转运过程中都至少能受到部分麦克纳姆轮的驱动。因此,并非局限于将麦克纳姆轮设置于承载部的角落。例如,可选地,各个麦克纳姆轮分别靠近承载部的各个边缘布置即可。

再如,前述实施例也无需拘泥于对麦克纳姆轮数量的限制。应当知道的是,更多的麦克纳姆轮将带来更平稳的转运过程,而更少的麦克纳姆轮将带来更优秀的成本效益。因此,可以根据实际需求来调整麦克纳姆轮的数量,并根据数量调整其布置形式。例如,如图4所示,当全向传输组件包括至少两个麦克纳姆轮111a、11b时,可使两个麦克纳姆轮111a、11b分别沿横向靠近承载部的边缘布置。当然,在未图示的实施例中,也可使两个麦克纳姆轮分别沿纵向靠近承载部的边缘布置。

此外,作为更进一步的改善,由于在转运过程中的部分状态下,待运输部件仅能与部分麦克纳姆轮接触并受其驱动。为了对此时的待运输部件提供更平稳的支承,全向传输组件还可以包括多个万向轮112a、112b、112c、112d、112e。其中,万向轮112a、112b、112c、112d分别靠近承载部120的边缘布置,而万向轮112e靠近承载部120的中心布置,以提供对待运输部件的支承及从动作用。作为一种更具体的实现形式,靠近承载部边缘布置的万向轮位于两个相邻的麦克纳姆轮之间,例如,万向轮112a位于麦克纳姆轮111a及111b之间。此时,待运输部件几乎在整个运输过程中都能受到多点支承,从而确保了运输的平稳性。

此外,虽然前述实施例均以麦克纳姆轮作为传输机构来进行描述。事实上,还可以采用其他驱动件来作为传输机构,只要不脱离本构想的精神。例如,作为另一个示例,传输机构还可以是全向舵轮,且其实现方式类似,故在此不作赘言。

为进一步优选运输过程,还对该运输器上的其他结构做出了改动,如下将逐一说明。

结合图1至图6,在一个实施例中,运输器的承载部还包括沿承载部120边缘设置的边缘挡块121a、121b、121c及121d。边缘挡块具有止挡位置及通行位置,并可在两种位置间进行切换。如图5及图6所示,以边缘挡块121a为例,在止挡位置时,边缘挡块121a构造成阻止待运输部件通过;在通行位置时,边缘挡块121a构造成允许待运输部件通过。此种布置更有利于待运输部件的定位及转运。例如,在待运输部件从运输器上转出时,为确保其能够朝向期望的方向转出,一方面通过控制麦克纳姆轮来形成对应的合力方向;另一方面也可以将其他非通行方向的挡块调整成止挡位置,而将期望方向的挡块调整成通行位置,通过各挡块的各自的止挡及导向作用来对驱动力的偏差来进行辅助修正。如此能够更进一步地提高该运输器的转运精度与可靠性。

作为一种具体实现方式,边缘挡块121a、121b、121c及121d可分别与承载部120的边缘枢接;在此种布置下,当处于止挡位置时,边缘挡块枢转至高于承载部;当处于通行位置时,边缘挡块枢转至低于承载部。

可选地,该运输器还包括移动部130,以用于驱动承载部120携带待运输部件在期望的目标位置之间移动。

此外,虽然本构想的运输器具有多种期望的应用场景。但在此着重提出其中一种应用情形,也即,将该运输器用于运输电动汽车的待更换电池。此时,考虑到换电站等场所的空间极其有限,还可将运输器的承载部结构进一步优化成使其具有与待更换电池相匹配的尺寸,如此能够以尽可能小的尺寸完成全部换电功能。

随后,将结合图1及图7-8来举例描述该运输器在电动汽车换电过程中的工作原理。

图7示出了运输器沿y轴正向传输的示意图。图中各麦克纳姆轮上的箭头标识用于指示其施力方向。此时,控制器控制四个麦克纳姆轮111a、111b、111c、111d同时正转,使得:麦克纳姆轮111a产生沿y轴正向与x轴负向之间的力;麦克纳姆轮111b产生沿y轴正向与x轴正向之间的力;麦克纳姆轮111c产生沿y轴正向与x轴负向之间的力;且麦克纳姆轮111d产生沿y轴正向与x轴正向之间的力。此时的合力方向沿y轴正向。与此同时,边缘挡块121a调整成通行位置,而其他三个边缘挡块121b、121c及121d保持止挡位置。此时,待更换电池在麦克纳姆轮的驱动下,沿着多个边缘挡块所围置成的导向行进,并从y轴正向被转移至指定位置。

同理,通过调整麦克纳姆轮转向及边缘挡块的开闭,则可以实现运输器沿y轴负向传输的功能,故在此不再赘言。

图8示出了运输器沿x轴正向传输的示意图。图中各麦克纳姆轮上的箭头标识用于指示其施力方向。此时,控制器控制麦克纳姆轮111b及111d正转,并同时控制111a及111c反转,使得:麦克纳姆轮111a产生沿y轴负向与x轴正向之间的力;麦克纳姆轮111b产生沿y轴正向与x轴正向之间的力;麦克纳姆轮111c产生沿y轴负向与x轴正向之间的力;且麦克纳姆轮111d产生沿y轴正向与x轴正向之间的力。此时的合力方向沿x轴正向。与此同时,边缘挡块121b调整成通行位置,而其他三个边缘挡块121a、121c及121d保持止挡位置。此时,待更换电池在麦克纳姆轮的驱动下,沿着多个边缘挡块所围置成的导向行进,并从x轴正向被转移至指定位置。

同理,通过调整麦克纳姆轮转向及边缘挡块的开闭,则可以实现运输器沿x轴负向传输的功能,故在此不再赘言。

结合图1来描述运输器沿顺时针旋转传输的过程。此时,控制器控制麦克纳姆轮111a及111d正转,并同时控制111b及111c反转,使得:麦克纳姆轮111a产生沿y轴正向与x轴负向之间的力;麦克纳姆轮111b产生沿y轴负向与x轴负向之间的力;麦克纳姆轮111c产生沿y轴负向与x轴正向之间的力;且麦克纳姆轮111d产生沿y轴正向与x轴正向之间的力。此时,麦克纳姆轮111a及111d所形成的合力方向沿y轴正向,而麦克纳姆轮111b及111c所形成的合力方向沿y轴负向。二者共同形成沿顺时针旋转地力矩,使置于其上的待运输电池能够沿顺时针旋转。与此同时,边缘挡块121a、121b、121c及121d均调整成通行位置,使得电池的旋转过程不会受阻。

同理,通过调整麦克纳姆轮转向及边缘挡块的开闭,则可以实现运输器沿逆时针旋转向传输的功能,故在此同样不再赘言。

以上例子主要说明了运输器。尽管只对其中一些本发明的实施方式进行了描述,但是本领域普通技术人员应当了解,本发明可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如所附各权利要求所定义的本发明精神及范围的情况下,本发明可能涵盖各种的修改与替换。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1