焊接方法及焊接体与流程

文档序号:15215991发布日期:2018-08-21 16:52阅读:308来源:国知局

本发明涉及焊接第一树脂层与第二树脂层的焊接方法及焊接体。



背景技术:

以往,作为用于过滤油的滤油器等的容器,有在一对树脂容器中夹入有树脂制网状构件的容器。

该现有容器具备形成有流入油的流入口的上部构件、与上部构件接合并与上部构件之间形成内部空间、并且形成有排出从流入口流入的油的排出口的下部构件、以及夹在上部构件的接合面和下部构件的构件面之间的网状构件。该容器在上部构件和下部构件的外周部形成有被螺栓贯穿的凸缘部,通过对该凸缘部进行螺栓紧固,在网状构件夹在上部构件的接合面和下部构件的接合面之间的状态下将上部构件的接合面和下部构件的接合面接合。

然而,以往的容器为了对上部构件和下侧构件进行螺栓紧固,需要增大凸缘部,因此在实现节省空间方面存在极限。

在这一方面,也考虑通过振动焊接将上部构件与下部构件接合。然而,为了进行振动焊接而使上部构件和下部构件振动时,存在夹在上部构件的接合面和下部构件的接合面之间的网状构件发生扭曲的问题。而且,即使想要使上部构件和下部构件振动而将上部构件与下部构件焊接,利用网状构件只有削平上部构件的接合面和下部构件的接合面,无法将上部构件的接合面与下部构件的接合面焊接。

因此,对于这种在上部构件和下部构件之间夹有网状构件的容器而言,将上部构件与下部构件焊接是非常难的。

对于上述问题,专利文献1中记载了一种技术,该技术在上侧构件的凸缘部和下侧构件的凸缘部之间夹入树脂制过滤元件,通过激光焊接将上侧构件的凸缘部与下侧构件的凸缘部焊接。

现有技术文献

专利文献

专利文献1:日本特开2006-231875号公报



技术实现要素:

发明所要解决的问题

然而,关于专利文献1所述的技术,在上侧构件的凸缘部和下侧构件的凸缘部之间夹有树脂制过滤元件的状态下,焊接速度不足,因此在这一方面还有进一步改良的余地。

因此,本发明的目的在于提供实现提高焊接速度的焊接方法及焊接体。

用于解决问题的手段

本发明的焊接方法为将第一树脂层与第二树脂层焊接的焊接方法,其中,在第一树脂层和第二树脂层之间夹入形成有空隙的金属层,对第一树脂层和第二树脂层的至少一者照射激光,使熔融的树脂贯穿金属层而将第一树脂层与第二树脂层焊接。

根据本发明的焊接方法,由于在第一树脂层和第二树脂层之间夹入形成有空隙的金属层,在对第一树脂层和第二树脂层的至少一者照射激光时,熔融的树脂进入金属层的空隙,并且该熔融的树脂贯穿金属层,由此将第一树脂层与第二树脂层焊接。此时,金属层通过吸收所照射的激光的一部分而产生焦耳热。由此,第一树脂层和第二树脂层的加热速度提高,促进树脂熔融,由此可以提高第一树脂层和第二树脂层的焊接速度。并且,由于金属层形成有空隙,因而所照射的激光不会被金属层全反射,而是可以通过金属层。因此,可以抑制树脂熔融受到金属层阻碍。

另外,本发明可以是金属层的空隙率为10%以上且85%以下的方法。通过使金属层的空隙率为10%以上,熔融的树脂易于贯穿金属层,因此可以容易地将第一树脂层和第二树脂层焊接。另一方面,通过使金属层的空隙率为85%以下,可以在金属层中确保可以尽可能促进第一树脂层和第二树脂层的加热的金属量,因此可以提高第一树脂层和第二树脂层的加热速度。

另外,本发明可以是金属层为形成有网眼的网状构件的方法。由此,通过使用网状构件作为金属层,在将第一树脂层与第二树脂层焊接时,可以提高第一树脂层和第二树脂层的加热速度,并且使熔融的树脂易于贯穿金属层。

另外,本发明可以是金属层含有具有光吸收性的金属的方法。由此,通过使用含有具有光吸收性的金属的金属层,可以在照射激光时促进金属层的发热。

另外,本发明可以为如下方法:金属层含有选自铁、铝、铜、钛、镍、锡、锌、铬、无铅焊料、至少含有它们的合金、作为它们以外的金属或合金并通过实施表面处理而吸收激光的金属材料、具有金属覆膜的材料中的至少一种。通过使用含有这样的金属的金属层,可以在照射激光时使金属层适当地发热。

另外,本发明可以是如下方法:树脂层含有选自苯乙烯类树脂、烯烃类树脂、聚酯类树脂、聚碳酸酯类树脂、丙烯酸类树脂、聚酰胺类树脂、abs树脂、改性ppe树脂、含氟树脂、热塑性聚酰亚胺树脂、芳香族聚醚酮、橡胶类树脂中的至少一种。通过使用含有这样的树脂的树脂层,可以使第一树脂层和第二树脂层适度地熔融。

另外,本发明可以是第一树脂层和第二树脂层中的任意一者含有光透过性树脂、第一树脂层和第二树脂层中的任意另一者含有光吸收性树脂的方法。用这样的树脂形成第一树脂层和第二树脂层,并且从光透过性树脂侧照射激光,由此使光吸收性树脂侧熔融,从而可以将第一树脂层与第二树脂层焊接。

另外,本发明可以是第一树脂层和第二树脂层含有光透过性树脂的方法。即使用这样的树脂形成第一树脂层和第二树脂层,也可以利用金属层的发热将第一树脂层与第二树脂层焊接。

另外,本发明可以是第一树脂层和第二树脂层还含有激光吸收材料的方法。这样,通过使用含有激光吸收材料的树脂层,即使在使第一树脂层和第二树脂层对接的状态下,通过从第一树脂层及第二树脂层的外侧对第一树脂层及第二树脂层的至少一者照射激光,不仅被照射激光的第一树脂层和/或第二树脂层的外侧部分,而且第一树脂层和/或第二树脂层的内部也可以充分地熔融。由此,可以进一步提高第一树脂层和第二树脂层的焊接强度。并且,即使不在第一树脂层及第二树脂层上形成用于焊接的凸缘,也可以将第一树脂层和第二树脂层激光焊接,因此可以实现节省空间。

另外,本发明可以是如下方法:第一树脂层为形成有流入液体的流入口的第一容器部,第二树脂层为与第一容器部之间形成有内部空间并且形成有排出从流入口流入的液体的排出口的第二容器部,金属层为将内部空间分隔成流入口侧和排出口侧的网状构件。通过形成这样的构成,可以制造滤油器等过滤流体的容器。

本发明的焊接体通过上述任一种焊接方法在第一树脂层和第二树脂层之间夹有金属层的状态下将第一树脂层与第二树脂层焊接而得到。

另外,本发明的焊接体是将第一树脂层与第二树脂层焊接而得到的焊接体,其具备第一树脂层、第二树脂层和夹在第一树脂层和第二树脂层之间的金属层,金属层形成有空隙,第一树脂层和第二树脂层隔着金属层被焊接,并且将第一树脂层与第二树脂层焊接的焊接部贯穿金属层。

发明效果

根据本发明,可以实现提高焊接速度。

附图说明

图1为实施方式的滤油器的前视图。

图2为实施方式的滤油器的俯视图。

图3为图1和图2中所示的iii-iii线处的滤油器剖视图。

图4为图3中所示的iv-iv线处的滤油器剖视图。

图5为图3中所示的滤油器的局部放大图。

图6为图4中所示的滤油器的局部放大图。

图7为表示网状构件的结构的图。

图8为用于说明金属粉的最接近距离的图。

图9为实施例中的第一容器部和第二容器部的前视图。

图10为实施例中的第一容器部和第二容器部的底视图。

图11为实施例中的网状构件的俯视图。

具体实施方式

下面,参照附图对本发明的焊接方法及焊接体的优选实施方式进行详细说明。需要说明的是,在所有图中,对于相同或相当的部分标注相同符号。

(第1实施方式)

第1实施方式中,将本发明应用于滤油器。图1为实施方式的滤油器的前视图。图2为实施方式的滤油器的俯视图。图3为图1和图2中所示的iii-iii线处的滤油器剖视图。图4为图3中所示的iv-iv线处的滤油器剖视图。图5为图3中所示的滤油器的局部放大图。图6为图4中所示的滤油器的局部放大图。

如图1~图3所示,本实施方式的滤油器1具备构成第一树脂层的第一容器部2、构成第二树脂层的第二容器部3和构成金属层的网状构件4。而且,滤油器1通过在第一容器部2和第二容器部3之间夹有形成有空隙的金属层的状态下将第一容器部2和第二容器部3激光焊接而制造。

第一容器部2通过与第二容器部3接合而在与第二容器部3之间形成填充作为流体的油的内部空间。第一容器部2是树脂制容器,形成为近似碗状,第一容器部2与第二容器部3接合的面带有开口。

第一容器部2形成有用于使油流入内部空间的流入口21。流入口21的形成位置没有特别限定,可以设定在第一容器部2的任意位置。需要说明的是,附图中,在与第一容器部2的开口相对的位置形成流入口21。

在第一容器部2的开口侧边缘形成有接合部22,接合部22形成开口并与第二容器部3接合。接合部22形成有与第二容器部3接合的接合面23。从提高与第二容器部3的接合性的观点出发,接合面23形成为近似平面状。另外,从增大接合面23的面积的观点出发,接合部22可以形成为沿接合面23向第一容器部2的外侧延伸的凸缘状。需要说明的是,接合部22不一定要形成为凸缘状。

第二容器部3通过与第一容器部2接合而与第一容器部2之间形成填充作为流体的油的内部空间。第二容器部3为树脂制容器,形成为与第一容器部2接合的面带有开口的近似碗状。

第二容器部3上形成有用于排出流入内部空间的油的排出口31。排出口31的形成位置没有特别限定,可以设定在第二容器部3的任意位置。需要说明的是,附图中,在与第二容器部3的开口相对的位置形成有排出口31。

在第二容器部3的开口侧边缘形成有形成开口并与第一容器部2接合的接合部32。接合部32上形成有与第一容器部2的接合面23接合的接合面33。从提高与第一容器部2的接合性的观点出发,接合面33形成为近似平面状。另外,从增大接合面33的面积的观点出发,接合部32可以形成为沿接合面33向第二容器部3的外侧延伸的凸缘状。需要说明的是,接合部32不一定要形成为凸缘状。

形成第一容器部2和第二容器部3的树脂只要具有热塑性就没有特别限定。另外,形成第一容器部2和第二容器部3的树脂可以相同也可以不同,但是从激光焊接的观点出发,优选第一容器部2和第二容器部3的任意一者为光透过性树脂、第一容器部2和第二容器部3的任意另一者为光吸收性树脂。但是,也可以使第一容器部2和第二容器部3两者均为光透过性树脂。

作为形成第一容器部2和第二容器部3的树脂,只要具有热塑性就没有特别限定,可以为含有选自例如苯乙烯类树脂、烯烃类树脂、聚酯类树脂、聚碳酸酯类树脂、丙烯酸类树脂、聚酰胺类树脂、abs树脂、改性ppe树脂、含氟树脂、热塑性聚酰亚胺树脂、芳香族聚醚酮、橡胶类树脂等中的至少一种树脂。这些之中,从经济性、通用性等观点出发,优选聚酰胺类树脂、聚烯烃类树脂。作为苯乙烯类树脂的具体例,可以举出聚苯乙烯等。作为烯烃类树脂的具体例,可以举出聚乙烯、聚丙烯、乙烯-丙烯共聚物、乙烯-乙酸乙烯酯共聚物等。作为聚酯类树脂的具体例,可以举出聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酸丁二醇酯等。作为聚碳酸酯类树脂的具体例,可以举出聚碳酸酯、聚碳酸酯-abs合金树脂等。作为丙烯酸类树脂的具体例,可以举出聚甲基丙烯酸甲酯、丙烯酸-丙烯酸酯共聚物等。作为聚酰胺类树脂的具体例,可以举出聚酰胺(pa)6、pa11、pa12、pa66、pa610、pa6t、pa6i、pa9t等。作为改性ppe树脂的具体例,可以举出ppe与选自由聚苯乙烯、聚酰胺和聚丙烯组成的组中的任意一种等的聚合物合金等。作为含氟树脂的具体例,可以举出聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、全氟烷氧基含氟树脂、四氟乙烯-六氟丙烯共聚物、乙烯-四氟乙烯共聚物等。作为橡胶类树脂的具体例,可以举出苯乙烯类热塑性弹性体、聚烯烃类热塑性弹性体、聚酰胺类热塑性弹性体、聚酯类热塑性弹性体、热塑性聚氨酯弹性体等。

为光吸收性树脂时,可以使用利用炭黑、油溶黑等颜料或染料对上述树脂或材料进行着色后的树脂。

如图3~图6所示,网状构件4配置在第一容器部2与第二容器部3之间,将从第一容器部2的流入口21流入的油过滤,然后从第二容器部3的排出口31排出。网状构件4由金属(金属线)形成为网状结构。因此,如图7所示,网状构件4在以格子状配置的金属线4a的网眼中形成有间隙4b。

网状构件4形成为覆盖所有第一容器部2的开口和第二容器部3的开口的形状,其周缘部被夹入第一容器部2的接合面23与第二容器部3的接合面33之间。因此,对于网状构件4而言,周缘部的一个面侧(表面侧)与第一容器部2的接合面23接触,周缘部的另一个面侧(背面侧)与第二容器部3的接合面33接触。

在此,在第一容器部2与第二容器部3之间夹入网状构件4,从第一容器部2和第二容器部3中的光透过性树脂侧照射激光时,第一容器部2和第二容器部3中的光吸收性树脂侧熔融。而且,该熔融的树脂进入网状构件4的空隙(网眼),并且该熔融的树脂贯穿网状构件4,由此将第一容器部2与第二容器部3焊接。此时,网状构件4通过吸收所照射的激光的一部分而产生焦耳热。由此,第一容器部2和第二容器部3的加热速度升高,从而促进树脂的熔融,因此第一容器部2和第二容器部3的焊接速度提高。并且,网状构件4形成有空隙,因此所照射的激光不会被网状构件4全反射,可以通过网状构件4。因此,可以抑制树脂熔融受到网状构件4阻碍。

网状构件4的网眼中形成的空隙的空隙率优选为10%以上且85%以下,更优选为15%以上且65%以下,进一步优选为20%以上且40%以下。该空隙率是间隙4b的面积相对于金属线4a和间隙4b加和而得到的网状构件4的面积的比例(参见图7)。通过使该空隙率为10%以上,在对第一容器部2和第二容器部3进行激光焊接时,熔融的树脂易于贯穿网状构件4,因此可以容易地对第一容器部2和第二容器部3进行焊接。此时,通过进一步使空隙率为15%以上、20%以上,该效果提高。另一方面,通过使网状构件4的空隙率为85%以下,可以在网状构件4中确保尽可能促进第一容器部2和第二容器部3的加热的金属量,因此可以提高第一容器部2和第二容器部3的加热速度。此时,通过进一步使空隙率为65%以下、40%以下,该效果提高。

作为形成网状构件4的金属,优选为具有光吸收性的金属,可以含有例如选自铁、铝、铜、钛、镍、锡、锌、铬、无铅焊料、至少含有它们的合金(不锈钢、黄铜、铝合金、磷青铜等)、作为它们以外的金属或合金并通过实施表面处理而吸收激光的金属材料、具有金属覆膜(镀敷、蒸镀膜等)的材料中的至少一种。此时,形成网状构件4或者网状构件4中含有的金属优选为吸收在对第一容器部2和第二容器部3进行激光焊接时所照射的激光的金属。例如,进行激光焊接时所照射的激光的波长为500nm以上且1500nm以下,因此优选以该波段的光吸收率高的sus作为网状构件4的材料。光吸收率高是指光吸收率为0.35以上。如此,通过使用含有具有光吸收性的金属的网状构件4,可以在照射激光时促进网状构件4的发热。

网状构件4的厚度没有特别限定,可以设定为例如0.005mm以上且0.800mm以下。此时,网状构件4的厚度优选为例如0.01mm以上且0.50mm以下,进一步优选为0.05mm以上且0.30mm以下。网状构件4中的网眼结构和网眼尺寸没有特别限定,可以根据滤油器1的用途等适当设定。

而且,对于滤油器1而言,第一容器部2的接合面23和第二容器部3的接合面33被焊接在网状构件4上。即,网状构件4的周缘部被夹入第一容器部2的接合面23和第二容器部3的接合面33之间,将第一容器部2的接合面23与第二容器部3的接合面33焊接的焊接部5贯穿网状构件4,由此将第一容器部2的接合面23与第二容器部3的接合面33焊接。焊接部5通过在对第一容器部2和第二容器部3进行激光焊接时,从第一容器部2和第二容器部3的至少一者熔出(熔融)的树脂冷却固化而形成。

第一容器部2和第二容器部3的焊接优选在网状构件4上沿着网状构件4的整个周缘连续地进行。即,贯穿网状构件4的焊接部5优选沿着网状构件4的整个周缘连续地形成。但是,第一容器部2和第二容器部3的焊接不一定需要连续地进行,也可以间断地进行。即,焊接部5不一定需要连续地形成,也可以间断地形成。

接着,对于滤油器1的制造方法、即第一容器部2与第二容器部3的焊接方法进行说明。

首先,准备第一容器部2、第二容器部3和网状构件4。

接着,在第一容器部2的接合面23与第二容器部3的接合面33之间夹入网状构件4的周缘部,使第一容器部2的接合面23和第二容器部3的接合面33对接。

接着,在网状构件4上对第一容器部2的接合面23和第二容器部3的接合面33进行激光焊接。激光焊接中,首先对第一容器部2照射激光使得激光的焦点对焦在网状构件4接触的接合面23的附近。于是,焦点附近的树脂熔融,该熔融的树脂穿过网状构件4而从第一容器部2的接合面23流出至第二容器部3的接合面33。之后,熔融的树脂到达接合面33时,停止激光的照射并使熔融的树脂冷却固化。于是,在第一容器部2的接合面23与第二容器部3的接合面33之间形成贯穿网状构件4且被焊接于第一容器部2的接合面23和第二容器部3的接合面33的焊接部5。

对于如此制造的滤油器1而言,第一容器部2的接合面23和第二容器部3的接合面33被焊接在网状构件4上,并且将第一容器部2的接合面23与第二容器部3的接合面33焊接的焊接部5贯穿网状构件4。

如上所述,根据本实施方式、在第一容器部2和第二容器部3之间夹入形成有空隙的网状构件4,因此对第一容器部2和第二容器部3的至少一者照射激光时,熔融的树脂进入网状构件4的空隙,并且熔融的树脂贯穿网状构件4,由此将第一容器部2与第二容器部3焊接。此时,网状构件4通过吸收所照射的激光的一部分而产生焦耳热。由此,第一容器部2和第二容器部3的加热速度提高,从而促进树脂的熔融,因此可以提高第一容器部2和第二容器部3的焊接速度。并且,网状构件4形成有空隙,因此所照射的激光不会被网状构件4全反射,可以通过网状构件4。因此,可以抑制树脂熔融受到网状构件4阻碍。

(第2实施方式)

接着,对第2实施方式进行说明。第2实施方式与第1实施方式基本上相同,仅在第一容器部2和第二容器部3的材质以及激光焊接的方法方面与第1实施方式不同。因此,在下面的说明中,仅说明与第1实施方式不同的方面,省略与第1实施方式同样的说明。

第2实施方式中,利用acw(absorbancecontrolwelding(吸光度控制焊接))工艺中使用的半透光性树脂形成第一容器部2和第二容器部3。acw工艺是指由orient化学工业株式会社提出的激光焊接工艺(参见日本专利第4102424号公报)。具体来说,acw工艺是通过使热塑性树脂含有激光吸收材料等来制作吸光度为0.07~3.0的半透光性树脂,使该半透光性树脂吸收激光的至少一部分,由此对相同材料的半透光性树脂进行激光焊接的工艺。

作为形成第一容器部2和第二容器部3的半透光性树脂,可以举出例如在包含1种或2种以上聚酰胺树脂的聚酰胺树脂组合物中配合有激光吸收材料等而得到的物质。

作为上述聚酰胺树脂组合物,可以举出聚酰胺66(聚己二酰己二胺)、聚酰胺6、聚酰胺mxd6(聚己二酰间苯二甲胺)、聚酰胺6i、聚酰胺6t、聚酰胺9t、聚酰胺m5t等。这些也可以混合使用两种以上。

作为激光吸收材料,可以举出吖嗪类化合物、油溶黑、苯胺黑、酞菁、萘酞菁、卟啉、菁类化合物、苝、四萘嵌三苯(quaterrylene)、金属络合物、偶氮染料、蒽醌、方酸衍生物和亚铵(immonium)染料等。上述热塑性材料中的激光吸收材料的含量相对于聚酰胺树脂组合物100质量份优选为0.001~0.8质量份,更优选为0.01~0.5质量份。激光吸收材料的含量小于0.001质量份时,激光焊接时的发热量少,焊接部5的接合强度容易不充分;另一方面,大于0.8质量份时,激光焊接时的发热量过多,从而容易产生烧焦或空孔。

上述热塑性材料可以是在聚酰胺树脂组合物和激光吸收材料中根据需要配合如下所述的添加剂而得到的物质。作为添加剂的种类,可以举出例如增强材料(例如玻璃填料)、着色剂、填充材料、紫外线吸收剂、光稳定剂、抗氧化剂、抗菌防霉剂、阻燃剂、助色剂、分散剂、稳定剂、增塑剂、改性剂、防静电剂、润滑剂、脱模剂、结晶促进剂和结晶成核剂等。这些添加剂可以单独使用1种,也可以并用2种以上。

例如,玻璃填料的含量相对于聚酰胺树脂组合物100质量份可以为约20~约100质量份。除此以外的添加剂的合计量相对于聚酰胺树脂组合物的总质量100质量份可以为约0.1~约50质量份。根据本发明人的研究,即使玻璃填料(例如玻璃纤维)的含量相对于聚酰胺树脂组合物100质量份为约100质量份,只要相对于上述聚酰胺树脂组合物100质量%含有至少40质量%的低熔点聚酰胺,就可以通过利用激光照射的聚酰胺树脂的熔融来实现足够高强度的接合强度。

需要说明的是,第1构件1和第2构件2含有相同组成的热塑性材料时,只要两者的聚酰胺树脂组合物的组成相同,激光吸收材料的配合量和/或添加剂的种类和配合量在两者之间可以不同。

接着,对于滤油器1的制造方法、即第一容器部2与第二容器部3的焊接方法进行说明。

首先,与第1实施方式同样地准备第一容器部2、第二容器部3和网状构件4,在第一容器部2的接合面23与第二容器部3的接合面33之间夹入网状构件4的周缘部,使第一容器部2的接合面23和第二容器部3的接合面33对接。

接着,对第一容器部2的接合面23和第二容器部3的接合面33进行激光焊接。激光焊接中,可以实施例如日本专利第4102424号公报中记载的方法。具体来说,激光焊接中,从第一容器部2和第二容器部3的外侧照射激光使得激光的焦点对焦在网状构件4接触的第一容器部2的接合面23的附近。

于是,不仅被照射激光的第一容器部2的外侧部分,而且第一容器部2的内部也充分熔融。并且,该被熔融的树脂穿过网状构件4的间隙而从第一容器部2的接合面23流出至第二容器部3的接合面33。然后,熔融的树脂到达接合面33时,停止激光照射,并使熔融的树脂冷却固化。于是,在第一容器部2的接合面23和第二容器部3的接合面33之间,形成贯穿网状构件4而被焊接于第一容器部2的接合面23和第二容器部3的接合面33的焊接部5。

此时,在照射激光的第一容器部2不产生烧焦或空孔的范围内,适当设置激光的照射条件使得照射激光的第一容器部2充分发热且充分进行熔融。作为激光的照射条件,可以举出激光的输出功率和激光的照射时间(照射速度)等。

沿着网状构件4的整个周缘连续地进行激光焊接时,优选在旋转第一容器部2和第二容器部3的同时照射激光。如此,在使第一容器部2和第二容器部3旋转时,可以通过第一容器部2和第二容器部3的旋转速度来设定激光的照射时间(照射速度)。

作为所照射的激光的波长,可以使用800nm以上且1600nm以下的红外线,优选为在800nm以上至1100nm具有振荡波长的激光。可以使用例如固体激光(nd:yag激发、半导体激光激发等)、半导体激光、可调谐蓝光二极管激光、钛蓝宝石激光(nd:yag激发)。或者,可以使用产生波长700nm以上的红外线的卤素灯或氙灯。

对于如此制造的滤油器1而言,第一容器部2的接合面23和第二容器部3的接合面33被焊接在网状构件4上,并且将第一容器部2的接合面23与第二容器部3的接合面33焊接的焊接部5贯穿网状构件4。

如上所述,根据本实施方式,在第1实施方式的基础上,还可以得到如下效果。即,通过使第一容器部2和第二容器部3为在聚酰胺树脂组合物中含有激光吸收材料等的半透光性的树脂,即使在使第一容器部2和第二容器部3对接的状态下,通过从第一容器部2和第二容器部3的外侧向第一容器部2照射激光,不仅被照射激光的第一容器部2的外侧部分,而且可以使第一容器部2的内部充分地熔融。由此,可以进一步提高第一容器部2和第二容器部3的焊接强度。而且,即使不在第一容器部2和第二容器部3上形成用于焊接的凸缘,也可以对第一容器部2和第二容器部3进行激光焊接而不依赖于激光的照射角度,因此可以实现节省空间。

(第3实施方式)

接着,对第3实施方式进行说明。

第3实施方式是在第一树脂层和第二树脂层之间夹入形成有空隙的金属层,将第一树脂层与第二树脂层焊接的焊接方法。

第一树脂层和第二树脂层可以使用与第1实施方式或第2实施方式的第一容器部2和第二容器部3相同的树脂。

金属层只要形成有空隙就可以为任意形状。作为金属层,除了第1实施方式和第2实施方式的网状构件4等网状构件以外,还可以使用例如金属线、金属粉。

使用金属粉作为金属层时,在涂料等介质中混合金属粉,将该介质涂布在第一树脂层和/或第二树脂层上,由此可以容易地在第一树脂层和第二树脂层之间夹入金属层。此时,在介质中混合的金属粉的最接近距离的平均值优选为0.001μm以上且300μm以下,更优选为0.005μm以上且200μm以下,进一步优选为0.01μm以上且100μm以下。在此,如图8所示,金属粉的最接近距离是指从某一金属粉至位于最接近的位置的另一金属粉的间隔距离(空间距离)。金属粉的最接近距离的测定可以通过例如sem进行。通过使该最接近距离的平均值为0.001μm以上,在对第一树脂层和第二树脂层进行激光焊接时,熔融的树脂易于贯穿金属层,因此可以容易地将第一树脂层与第二树脂层焊接。此时,通过进一步使最接近距离的平均值为0.005μm以上、0.01μm以上,该效果提高。另一方面,通过使最接近距离的平均值为300μm以下,可以在金属层中确保尽可能促进第一树脂层和第二树脂层的加热的金属量,因此可以提高第一树脂层和第二树脂层的加热速度。此时,通过进一步使最接近距离的平均值为200μm以下、100μm以下,该效果提高。

接着,对第一树脂层与第二树脂层的焊接方法进行说明。

首先,与第1实施方式同样地准备第一树脂层、第二树脂层和金属层,在第一树脂层和第二树脂层之间夹入金属层,使第一树脂层和第二树脂层对接。

接着,对第一树脂层和第二树脂层进行激光焊接。激光焊接可以通过与第1实施方式或第2实施方式同样的方法进行。

于是,被照射激光的第一树脂层熔融,该熔融的树脂穿过金属层的间隙而从第一树脂层流出至第二树脂层。然后,在熔融的树脂到达第二树脂层时,停止激光照射并使熔融的树脂冷却固化。于是,在第一树脂层和第二树脂层之间形成贯穿金属层并焊接于第一树脂层和第二树脂层的焊接部。

对于如此进行焊接而得到的焊接体而言,将第一树脂层与第二树脂层焊接的焊接部贯穿金属层,由此第一树脂层和第二树脂层隔着金属层被焊接。

以上,对本发明的优选实施方式进行了说明,但本发明不限于上述实施方式。

例如,对于第1和第2实施方式而言,使用滤油器作为本发明的应用例进行了说明,但是本发明不限于滤油器,可以应用于其它各种构件。另外,流体不限于油,可以采用其它各种液体、气体等。

另外,对于第1和第2实施方式而言,以第一容器部2和第二容器部3的焊接仅在网状构件4上进行的形式进行了说明,但第一容器部2和第二容器部3的焊接只要至少在网状构件4上进行即可,也可以在网状构件4以外的位置进行。

另外,对于第1和第2实施方式而言,在对第一容器部2和第二容器部3进行激光焊接时,以将激光的焦点对焦在第一容器部2而使树脂熔融的形式进行了说明,但是可以将激光的焦点对焦在第一容器部2和第二容器部3的至少一者而使树脂熔融。

另外,对于第1和第2实施方式而言,以第一容器部2和第二容器部3整体是树脂制的形式进行了说明,但是只要至少将第一容器部2与第二容器部3接合的面是树脂制的即可。

实施例

接着,对本发明的实施例进行说明。需要说明的是,本发明不限于以下的实施例。

(实施例1~4、比较例1)

图9为实施例中的第一容器部和第二容器部的前视图。图10为实施例中的第一容器部和第二容器部的底视图。图11为实施例中的网状构件的俯视图。

如图9和图10所示,第一容器部2和第二容器部3为将细长胶囊沿长度方向对半分割的形状,第一容器部2的接合面23和第二容器部3的接合面33形成为具备平行配置的一对直线状面部z和各自与一对直线状面部z连接的一对半圆状面部y的形状。对于接合面23和接合面33而言,直线状面部z和半圆状面部y的宽度a为5.0mm,一对直线状面部z的内侧的间隔b为55.0mm,一对直线状面部z的外侧的间隔c为65.0mm,半圆状面部y的内侧的半径d为27.5mm,半圆状面部y的外侧的半径e为32.5mm。另外,对于第一容器部2和第二容器部3而言,连接部的厚度f为3.5mm,从连接部至第一容器部2和第二容器部3的顶部的高度g为27.5mm。第一容器部2和第二容器部3的材料为相同材料聚酰胺66(pa66),一者为光透过性,另一者利用作为光吸收材料的油溶黑进行着色而成为光吸收性。

如图11所示,网状构件4形成为具备长方形部x和连接于长方形部x的短边方向两端的一对半圆部w的形状,准备一大一小两种网状构件。对于大型的网状构件4而言,长方形部x在短边方向的宽度h为66.0mm,长方形部x在长度方向的长度i为195.0mm,半圆部w的半径j为33.0mm,厚度为0.1mm。对于小型的网状构件4而言,长方形部x在短边方向的宽度h为59.0mm,长方形部x在长度方向的长度i为188.0mm,半圆部w的半径j为29.5mm,厚度为0.1mm。大型和小型的网状构件4的材料均为不锈钢(sus)。

实施例1中,在第一容器部2的接合面23与第二容器部3的接合面33之间夹入大型的网状构件4,对第一容器部2和第二容器部3进行激光焊接。对于激光焊接的条件而言,激光的输出功率为100w,激光的扫描速度为20.0mm/秒,激光的焦点径(直径)为φ3.2mm,激光对第一容器部2和第二容器部3的照射圈数为1圈。

实施例2中,在第一容器部2的接合面23和第二容器部3的接合面33之间夹入大型的网状构件4,对第一容器部2和第二容器部3进行激光焊接。对于激光焊接的条件而言,激光的输出功率为100w,激光的扫描速度为20.0mm/秒,激光的焦点径(直径)为φ3.2mm,激光对第一容器部2和第二容器部3的照射圈数为2圈。

实施例3中,在第一容器部2的接合面23和第二容器部3的接合面33之间夹入小型的网状构件4,对第一容器部2和第二容器部3进行激光焊接。对于激光焊接的条件而言,激光的输出功率为100w,激光的扫描速度为20.0mm/秒,激光的焦点径(直径)为φ3.2mm,激光对第一容器部2和第二容器部3的照射圈数为1圈。

实施例4中,在第一容器部2的接合面23和第二容器部3的接合面33之间夹入小型的网状构件4,对第一容器部2和第二容器部3进行激光焊接。对于激光焊接的条件而言,激光的输出功率为100w,激光的扫描速度为20.0mm/秒,激光的焦点径(直径)为φ3.2mm,激光对第一容器部2和第二容器部3的照射圈数为2圈。

比较例1中,不在第一容器部2的接合面23和第二容器部3的接合面33之间夹入网状构件4,对第一容器部2和第二容器部3进行激光焊接。对于激光焊接的条件而言,激光的输出功率为100w,激光的扫描速度为20.0mm/秒,激光的焦点径(直径)为φ3.2mm,激光对第一容器部2和第二容器部3的照射圈数为1圈。

然后,对于实施例1~4和比较例1进行了破坏检查。对于破坏检查而言,堵塞第二容器部3的排出口31,从第一容器2的流入口21逐渐加入水,测量容器1破坏或漏水时的压力作为崩裂强度。

如表1所示,任一实施例均不比比较例1逊色。由该结果确认到,在实施例中,第一容器部2与第二容器部3被可靠地焊接。

[表1]

(实施例5)

实施例5中,作为第一树脂层,制作在顶部形成有开口的半球状的第一构件,作为第二树脂层,制作平板状的第二构件,作为金属层,制作夹入第一构件与第二构件之间的网状构件。

第一构件和第二构件由acw工艺中使用的半透光性的树脂制作。

在第一构件和第二构件的制作时,首先制备聚酰胺66颗粒。聚酰胺66颗粒的制备中,在400l高压釜中,向40%ah盐(己二酸与己二胺的等摩尔盐)水溶液投入碘化钾3质量%、碘化铜0.1质量%,在1.8mpa的加压下进行加热熔融聚合。对所得到的聚合物进行冷却固化和造粒,从而得到聚酰胺66颗粒。

接着,使用料筒温度设定为290℃的双螺杆挤出机(东芝机械株式会社制、商品名:tem35),将上述聚酰胺66颗粒64.5质量份、玻璃纤维33质量份(日本电气硝子株式会社制、商品名:t275h)、激光焊接用着色母料2.5质量份(orient化学工业株式会社制、商品名:ebindacw-9871)进行熔融混炼,从而得到热塑性材料颗粒。

接着,将上述热塑性材料颗粒导入机筒温度设定为290℃的注射成形机(住友重机械工业株式会社制、商品名:se130),在模具温度80℃下进行成形,从而得到第一构件和第二构件。

网状构件由sus(不锈钢)制的200目网制作。网状构件的空隙率为35%。

然后,在第一构件和第二构件之间夹入网状构件,通过acw工艺对第一构件和第二构件进行激光焊接,制作中空构件。此时,激光的输出功率为130w,wd(从激光照射光学系统至第1构件照射侧表面的距离)为83mm,焊接速度为35mm/秒。

(实施例6)

作为实施例6,制作与实施例5相同形状的第一构件、第二构件和网状构件。

第一构件由光吸收性的树脂制作,第二构件由光透过性的树脂制作。

在第一构件的制作时,首先制备聚酰胺66颗粒。聚酰胺66颗粒的制备中,在400l高压釜中,向40%ah盐(己二酸与己二胺的等摩尔盐)水溶液投入碘化钾3质量%、碘化铜0.1质量%,在1.8mpa加压下进行加热熔融聚合。对所得到的聚合物进行冷却固化和造粒,从而得到聚酰胺66颗粒。

接着,使用料筒温度设定为290℃的双螺杆挤出机(东芝机械株式会社制、商品名:tem35),将上述聚酰胺66颗粒65.6质量份、玻璃纤维34.1质量份(日本电气硝子株式会社制、商品名:t275h)、激光焊接用着色母料2.5质量份(orient化学工业株式会社制、商品名:ebind树脂着色染料物质0.3)进行熔融混炼,从而得到热塑性材料颗粒。

接着,将上述热塑性材料颗粒导入机筒温度设定为290℃的注塑成型机(住友重机械工业株式会社制、商品名:se130),在模具温度80℃下进行成形,从而得到第一构件。

在第二构件的制作时,首先制备聚酰胺66颗粒。聚酰胺66颗粒的制备中,在400l高压釜中,向40%ah盐(己二酸与己二胺的等摩尔盐)水溶液投入碘化钾3质量%、碘化铜0.1质量%,在1.8mpa加压下进行加热熔融聚合。对所得到的聚合物进行冷却固化和造粒,从而得到了聚酰胺66颗粒。

接着,使用料筒温度设定为290℃的双螺杆挤出机(东芝机械株式会社制、商品名:tem35),将上述聚酰胺66颗粒67质量份、玻璃纤维33质量份(日本电气硝子株式会社制、商品名:t275h)进行熔融混炼,从而得到热塑性材料用颗粒。

接着,将上述热塑性材料颗粒导入机筒温度设定为290℃的注塑成型机(住友重机械工业株式会社制、商品名:se130),在模具温度80℃下进行成形,从而得到第二构件。

网状构件由sus(不锈钢)制的200目网制作。网状构件的空隙率为35%。

然后,在第一构件和第二构件之间夹入网状构件,对第一构件照射透过第二构件的激光,由此对第一构件和第二构件进行激光焊接,从而制作中空构件。此时,激光的输出功率为130w,wd(从激光照射光学系统至第1构件照射侧表面的距离)为83mm,激光的输出功率为130w,焊接速度为35mm/秒。

(比较例2)

作为比较例2,制作与实施例5相同形状的第一构件、第二构件和网状构件。

第一构件和第二构件均由作为金属的铝合金制作。

网状构件由sus(不锈钢)制的200目网制作。网状构件的空隙率为35%。

然后,在第一构件和第二构件之间夹入网状构件,通过铆接将第一构件与第二构件接合,从而制作中空构件。

(气密性试验)

对于实施例5、6和比较例2进行气密性试验。气密性试验中,将耐压软管的一端连接于第一构件的开口,将耐压软管的另一端连接于带压力表的压缩机。将实施例5、6和比较例2的中空构件放入填充有水的水槽中,利用压缩机对各中空构件的内部进行加压。然后,测定作为各中空构件的内部压力的表压,观察表压为0.15mpa和0.25mpa时是否从第一构件和第二构件的接合部泄漏气泡。观察结果示于表2。

[表2]

如表2所示,表压为0.15mpa时,比较例2发生气泡泄漏,而实施例5、6未发生气泡泄漏。另外,表压为0.25mpa时,实施例6和比较例2发生气泡泄漏,而实施例5未发生气泡泄漏。由上述结果确认到,通过acw工艺对第一构件和第二构件进行激光焊接,第一构件与第二构件的焊接强度进一步提高。

附图标记

1…滤油器(容器)、2…第一容器部、21…流入口、22…接合部、23…接合面、3…第二容器部、31…排出口、32…接合部、33…接合面、4…网状构件、5…焊接部。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1