本发明涉及单个或多个连接而构成体现流体与热介质的热交换的热交换器的热交换器用模块单元,更详细而言,涉及如下一种热交换器用模块单元,在流体与热介质的移动路径之间配置有相变物质,使得借助于通过相变物质的间接热交换而执行流体与热介质的热交换,从而借助于相变物质蓄热的潜热,即使没有热介质的持续循环,也使流体与相变物质进行热交换,因而不仅能够使整体的能源使用效率最大化,特别是使得由多个相连接而形成热交换器的流体与热介质在空间不直接接触,可以稳定地执行功能。
背景技术:
一般而言,热交换器是热介质在根据循环周期而循环期间,通过与流体的热接触而进行热交换,根据希望的目的而对流体的热能进行吸热或加热。
这种热交换器应用于多样领域,作为其中之一,应用于使压缩空气(或废气)中包含的水分冷却并凝结后去除的冷冻式空气干燥机加以使用。
这种空气干燥机在流体(压缩空气、废气)的移动路径上,通过低温的热介质(制冷剂)使流体冷却,对内部含有的水分进行冷却并凝结后去除,使流体干燥。
即,利用制冷剂,热交换器对压缩空气进行冷却,将内部的凝结的水蒸气通过分离器(separator)排出到外部而去除,从而形成干燥空气。
此时,去除了凝结水的低温的干燥空气在吐出之前,在另外的热交换空间,与湿空气再执行一次热交换而被加热,可以使相对湿度降低,干燥度进一步提高,另外,高温的入口空气具有预冷效果,也可以应用可减小构成制冷剂冷却循环系统的蒸发器的冷冻负载的构成。
如上所述的空气干燥机通过制冷剂的冷却循环(refrigeratingcircuit)系统,以持续冷却的状态,与所述流体进行热交换,根据负载从0%至100%随时变动的空气干燥机的负载特性,存在所述制冷剂的冷却循环系统难以通过开启(on)/关闭(off)控制来调节温度的问题。
因此,以往是使所述制冷剂冷却循环系统始终运转,在必要时,使制冷剂旁通(by-pass)来调节温度。
但是,在这种情况下,根据空气干燥机的负载特性,制冷剂冷却循环系统与负载值无关地始终运转,因而存在能源使用效率显著下降的问题。
而且,为了解决如上所述的以往问题,提出并使用一种利用蓄冷槽和泵,以间接冷却方式,通过所述制冷剂冷却循环系统的开启(on)/关闭(off)控制来调节温度的空气干燥机,在这种情况下,利用乙二醇的显热而实现与流体的热交换,因而蓄冷槽(罐)较大,必需具备为了以实现热交换的热交换器来对其进行循环而所需的另外的泵,因而存在费用增大的问题。
技术实现要素:
解决的技术问题
本发明正是为了解决如上所述的以往问题而研发的,本发明的目的是提供一种热交换器用模块单元,可以由单个或多个连接而构成体现流体与热介质的热交换的热交换器,在流体与热介质的移动路径之间配置有相变物质,借助于通过相变物质的间接热交换而执行流体与热介质的热交换,从而借助于相变物质蓄热的潜热,即使没有热介质的持续循环,也使流体与相变物质进行热交换,因而不仅能够使整体的能源使用效率最大化,特别是使得由多个相连接而形成热交换器的流体与热介质在空间不直接接触,可以稳定地执行功能。
本发明提供一种热交换器用模块单元,特别是应用于空气干燥机,使利用了吸收热而融化或释放热而冻结的相变物质(phasechangingmaterial)潜热的蓄冷效果最大化,即使没有另外的蓄冷槽和泵,也顺利地体现流体的热交换,尤其应用于空气干燥机,从而不仅以比普通间接冷却式空气干燥机低廉的费用运转,而且蓄冷容量比原有间接冷却式空气干燥机大,可以改善对制冷剂冷却循环系统的耐久性造成致命问题的频繁开启/关闭控制,因此可以构成耐久性得到飞跃性地改善的热交换器。
技术方案
旨在达成如上所述本发明目的的本发明的热交换器用模块单元的特征在于,具有隔板的多个薄板在所述隔板的一侧具有供流体及热介质移动的之间间隙并层叠,所述隔板形成有供流体及热介质移动的贯通孔,通过分别连接所述贯通孔的连接体,选择性地连接所述之间间隙,构成供流体及热介质分别独立地移动的各个流体通路及热介质通路;在构成供所述流体及热介质移动的各个流体通路及热介质通路的之间间隙之间,配置有容纳相变物质的之间间隙,通过所述相变物质,实现所述流体及热介质间的热交换;且所述相变物质的一侧,排列有所述流体及热介质中一者;另一侧排列有另一相变物质。
其特征在于,在所述薄板的之间间隙中,在位于最外围的之间间隙中,在至少一个之间间隙,所述相变物质以被容纳的方式得到排列。
其特征在于,所述相变物质由石蜡构成。
其特征在于,在构成供所述相变物质连续地配置的2列之间间隙的隔板上,形成有流通孔,以便所述相变物质流通并相互交流。
发明效果
如上所述构成的本发明的热交换器用模块单元,其多个薄板在之间配备相变物质,同时构成供流体和热介质移动的通路并层叠,因而所述流体与热介质间的热交换通过所述相变物质的潜热而间接地实现,从而借助于相变物质蓄热的潜热,使得即使没有热介质的持续循环,也使流体与相变物质进行热交换,因而具有可以使整体的能源使用效率最大化的效果。
特别是当应用于空气干燥机时,随着使利用了所述相变物质潜热的蓄冷效果最大化,即使没有另外的蓄冷槽和泵,也顺利实现流体的热交换,不仅以比以往间接冷却式空气干燥机更低廉的费用运转,而且蓄冷容量比原有间接冷却式空气干燥机大,改善对制冷剂冷却循环系统的耐久性造成致命问题的频繁开启/关闭控制,具有可以飞跃性地改善耐久性的效果。
而且,当由多个连续连接而构成热交换器时,在构成模块单元间连接部位的之间间隙,配置至少一种相变物质,因而防止流体及热介质直接贴紧,防止结合时热交换效率下降,具有可以稳定地执行其功能的效果。
附图说明
图1及图2是显示利用了应用本发明一个实施例的热交换器用模块单元的热交换器的空气干燥机一个示例的概略立体示例图。
图3及图4是显示本实施例的热交换器用模块单元的概略示例图。
图5是显示应用本实施例的热交换器用模块单元的热交换器的概略示例图。
图6至图8是显示构成本实施例的热交换器用模块单元的薄板一个示例的概略示例图。
图9是显示构成本实施例的热交换器用模块单元的薄板另一示例的概略示例图。
图10是显示本实施例的热交换器用模块单元中流体移动状态的概略示例图。
图11是显示本实施例的热交换器用模块单元中热介质移动状态的概略示例图。
最佳实施方式
下面参照附图,详细说明本发明优选实施例的热交换器用模块单元。
本发明的实施例可以变形为多种形态,不得解释为本发明的范围限定于以下详细说明的实施例。本实施例是为了向该行业的普通技术人员更完整地说明本发明而提供的。因此,为了强调更明确的说明,附图中的要素的形状等可以夸张表现。需要注意的是,在各附图中,存在相同的构件以相同的附图标记图示的情形。省略对判断认为可能不必要地混淆本发明要旨的公知功能及构成的详细说明。
图1至图8是显示本发明一个实施例的热交换器用模块单元的图,本实施例的热交换器用模块单元1单独或多个连续连接而形成热交换器10,在供流体与热介质移动的空间上进行热交换,特别适合用于在主要含有水分的流体(压缩空气、废气)中,将热传递给低温的热介质,使水分凝结而去除,从而对空气进行干燥的空气干燥机100。
即,针对流体(压缩空气、废气),低温的热介质(制冷剂)通过相互间的热交换,吸收流体的热,使水分凝结,从而进行干燥。
优选所述的低温热介质(制冷剂)借助于应用另外的公知技术的冷却循环系统而冷却后进行再循环,通过与持续投入的流体的热接触而实现热交换。
这种本实施例的热交换器用模块单元1的多个薄板2具有隔板22,所述隔板22形成有多个供所述流体及热介质移动的贯通孔21,所述薄板2在所述隔板22的一侧具有供流体及热介质移动的之间间隙23并层叠。
即,所述薄板2具有之间间隙23并插入结合,通过所述贯通孔21,之间间隙23相互连接。
因此,流体及热介质经由所述之间间隙23并移动。
所述的薄板2包括所述隔板22和在所述隔板22外周面沿所述之间间隙23侧方向延长形成的侧壁24构成,在所述隔板22与所述侧壁24的之间空间形成所述之间间隙23。
优选所述的侧壁24由越向末端而越向外侧方向倾斜的倾斜面构成,使得多个薄板2层叠时,容易实现插入结合。
优选所述的贯通孔21在所述隔板22上,在上下左右四角部位分别形成,流体及热介质通过上侧和下侧的贯通孔21之间移动,优选流体及热介质具有各自独立的空间,通过分别在左侧及右侧形成的贯通孔21进行移动。
如此构成的本实施例的热交换器用模块单元1通过分别连接所述贯通孔21的连接体3,选择性地连接所述之间间隙23,构成供所述流体及热介质分别独立地移动的流体通路41和热介质通路42。
即,在连接通过所述连接体3而选择的所述贯通孔21的同时,在空间上分离贯通孔21与之间间隙,使得选择的贯通孔21与选择的之间间隙23相互连通,构成所述流体通路41及热介质通路42。
因此,可以在排列的之间间隙23中,只连接选择的位置的之间间隙23,构成流体通路41及热介质通路42。
因此,不仅可以以z字形形态形成所述流体通路41及热介质通路42,而且,可以分别在相互相向的位置形成,可以在结构上提高热交换效率。
所述连接体3可以以具有环(ring)形态的连接环31构成,使所述贯通孔21在与外部密闭的同时进行连接,也可以以从所述贯通孔21的周边部向构成其他薄板的隔板22侧方向延长、贴紧的延长凸部32构成,使所述贯通孔21与外部密闭的同时进行连接。
优选地,由如下结构构成,延长凸部32具有从所述贯通孔21的周边部向构成其他薄板2的隔板22侧方向开挖的容纳槽33,具有环(ring)形态的所述连接环31容纳于延长凸部32的容纳槽33,最优选地,以具有所述延长凸部32的凸出面贴紧于构成其他薄板2的隔板22的贯通孔21周边面的方式形成的结构。
另一方面,优选在所述隔板22上形成多个凹凸25,提高移动的流体及热介质与所述隔板22的接触面积,增大热交换效率,最优选所述凹凸25从所述隔板22的中心向两端形成倾斜角地形成,且沿着流体及热介质移动的方向,中央部位形成顶点。
因此,不仅高效增大沿所述之间间隙23进行移动的流体及热介质的热交换面积,增大热交换效率,而且,增大移动的流体及热介质与所述隔板22的接触面积,高效提高对象空气中含有的水分的凝结面积。
因此,提高空气的干燥效率。
在如上所述构成的本实施例的热交换器用模块单元1中,在构成所述流体通路41及热介质通路42的之间间隙23之间,配置有容纳相变物质5的之间间隙23,使得通过所述相变物质5实现所述流体与热介质间的热交换。
即,在热介质(制冷剂)与流体(压缩空气、废气)之间配置所述相变物质5,防止实现直接的热交换,使得通过所述相变物质5实现间接的热交换,借助于相变物质5蓄热的潜热,即使没有热介质的持续循环,也使流体与相变物质6进行热交换,因而能够使整体能源的使用效率最大化。
特别是当应用于空气干燥机100时,随着使利用了所述相变物质5潜热的蓄冷效果最大化,即使没有另外的蓄冷槽和泵,也顺利体现流体的热交换,不仅以比以往间接冷却式空气干燥机更低廉的费用运转,而且蓄冷容量比原有间接冷却式空气干燥机大,可以改善对制冷剂冷却循环系统的耐久性造成致命问题的频繁开启/关闭控制,可以飞跃性地改善耐久性。
优选所述的相变物质5由石蜡构成,优选在构成容纳所述相变物质5的之间间隙23的薄板2上,形成有注入孔26,以便注入相变物质5。
在如此构成的本实施例的热交换器用模块单元1中,优选在所述相变物质5的一侧排列有所述流体及热介质中的一者,在另一侧排列有其他相变物质5。
因此,与流体及热介质接近的各个相变物质5分别进行热交换,通过所述相变物质5间的热交换,最终间接实现流体及热介质间的热交换。
因此,所述相变物质5更稳定地实现充热,借助于相变物质5蓄热的潜热,即使没有热介质的持续循环,也使得流体与相变物质5进行热交换,因而使整体的能源使用效率最大化。
优选在所述构成供相变物质5连续配置的2列之间间隙23的隔板22上,形成有流通孔27,以便所述相变物质5流通并相互交流。
因此,优选通过所述流通孔27,使得所述相变物质5顺利交流,更顺利实现热交换。
在如上所述构成的本实施例的热交换器用模块单元1中,优选地,在所述薄板2的之间间隙23中,在位于最外围的之间间隙23中,在至少一个之间间隙23,所述相变物质5以被容纳的方式得到排列。
因此,当多个连续连接而构成热交换器10时,在构成模块单元1间的连接部位的之间间隙23,配置至少一种相变物质5,因而防止流体及热介质直接贴紧,防止结合时热交换效率下降,稳定执行其功能。
未说明标记“6”为“分离器(separator)”,“61”为“滤油器”。
下面详细说明如上所述构成的本实施例的热交换器用模块单元的作用效果。
本实施例的热交换器用模块单元1如图1及图2所示,构成热交换器10,主要应用于吸收对象空气(压缩空气、废气)的热而去除含有的水分的空气干燥机100,在供流体(对象空气)移动的流体通路41与供低温热介质(制冷剂)移动的热介质通路42之间配置有相变物质5,热交换不是急剧地实现,而是通过所述相变物质5间接地实现,吸收流体(对象空气)的热。
因此,流体(对象空气)中含有的水分凝结后,通过另外的分离器6排出到外部而去除,流体被干燥。
如上所述,本实施例的热交换器用模块单元1的技术构成的特征在于,当单独或多个连接而构成体现流体与热介质的热交换的热交换器10时,多个薄板2将相变物质5置于之间,具有构成供流体及热介质移动的流体通路41及热介质通路42的之间间隙23并层叠,因而通过所述相变物质5而实现所述流体及热介质间的热交换,使整体能源的使用效率最大化。
以上说明的本发明的一个实施例只不过是示例性的,只要是本发明所属技术领域的普通技术人员便会理解,可以由此导出多样的变形及等同的其他实施例。因此可以理解,本发明并非只限定于所述详细说明中提及的形态。因此,本发明的真正的技术保护范围应根据附带的专利权利要求书的技术思想确定。另外,应理解为本发明包括由附带的权利要求书定义的本发明精神及其范围内的所有变形物和等同物及替代物。
产业上的可利用性本发明涉及单独或多个连接而体现流体与热介质的热交换的模块单元,在流体与热介质的移动路径之间配置有相变物质,使得借助于通过相变物质的间接热交换,执行流体与热介质的热交换,从而可以应用于热交换器,借助于相变物质蓄热的潜热,即使没有热介质的持续循环,也使得流体与相变物质进行热交换。