水冷式电弧炉用环保冷却机构的制作方法

文档序号:12192951阅读:393来源:国知局
水冷式电弧炉用环保冷却机构的制作方法与工艺

本实用新型涉及耐火材料生产技术领域,尤其涉及一种电弧炉冷却机构。



背景技术:

在熔注耐火材料的生产过程中,电弧炉是常用的设备。在运行过程中,电弧炉将其内的耐材原料熔化,因此需要在生产过程中持续维持高温状态。过高的温度会降低设备使用寿命,并使工作人员在车间内无法正常工作。因此,需要对电弧炉的炉壁进行冷却,在维持炉内高温的同时,将高温区域控制在电弧炉内,防止炉内热量大量传递给环境,降低设备使用寿命并使车间内不适于人工作业。

现有的冷却结构是使用水冷,在电弧炉炉壁处设置水夹套,冷却水不断地流经水夹套,从而冷却电弧炉的炉壁。这种冷却结构的缺点是:冷却水被电弧炉加热后温度较高,流量较少时甚至出现沸腾现象;冷却水排放时蒸汽弥漫,对厂区产生污染,使厂区墙壁因长期潮湿而受损。排出的冷却水无法重复利用,水资源浪费较为严重。



技术实现要素:

本实用新型的目的在于提供一种结构简单、能够避免蒸汽污染厂区、重复利用水资源的电弧炉环保冷却结构。

为实现上述目的,本实用新型的水冷式电弧炉用环保冷却机构,包括电弧炉、换热器、储水池和冷却塔,电弧炉上设有用于冷却电弧炉的水夹套;

换热器包括换热箱,换热箱内沿换热箱的长度方向设有内管,内管外表面均匀间隔设有若干换热盘片;内管的进水端连接有第一管路,第一管路连接电弧炉的水夹套的顶部;内管的出水端连接有第二管路,第二管路通入储水池的一侧底部;换热箱于内管进水端处连接有第三管路,第三管路的末端开口在冷却塔的正上方;换热箱于内管出水端处连接有第四管路,第四管路连接所述冷却塔的底部;所述第四管路上设有用于将冷却塔内的水送入换热箱的第一循环泵;

储水池底部于第二管路的相对侧连接有第五管路,第五管路连接电弧炉的水夹套的底部;第五管路上设有用于将储水池内的水送入电弧炉的水夹套内的第二循环泵。

所述换热盘片上均匀分布有多个换热孔。

所述冷却塔包括冷却箱,冷却箱的底壁中心向上固定连接有竖杆,竖杆顶端位于冷却箱顶部;竖杆上由上至下均匀间隔连接有若干溢流盘,溢流盘的直径由上至下依次增大;第三管路的末端开口在最上层溢流盘的正上方。

所述溢流盘包括盘底,盘底周边向上连接有倾斜设置的盘沿。

所述冷却箱的上部侧壁设有风机,风机的出风口朝向溢流盘。

使用本实用新型,能够完全避免生产过程中蒸汽弥散到厂区内的情况,并且能够循环利用水资源,有效冷却电弧炉,具有良好的生产应用价值和环保价值。

换热孔的设置,既降低了换热盘片对水的阻力、有利于水在换热箱内的流动,又加快了水与换热盘片之间的换热速度。

溢流盘包括盘底,盘底周边向上连接有倾斜设置的盘沿。这样的设置,当上层溢流盘的水溢流到下层溢流盘的时候,就不会直接通过下层溢流盘的边缘直接溢流至更下一层溢流盘,而是只有在该层溢流盘盛满水后才会继续向下溢流。这样,在工作中每层溢流盘都盛满了水,因此大大增加了水与空气接触的面积,使水中的热量能够更迅速地被空气带走。

风机的出风口朝向溢流盘。这样可以进一步提高水与空气的换热效率,降低水温。

如果第二管路没有通入储水池的底部,而是开口在储水池液面上方,那么从第二管路仍然会流出少量蒸汽,对环境造成少量蒸汽污染;第二管路没有通入储水池的底部,则可以完全避免蒸汽弥散到大气中的现象。

附图说明

图1是本实用新型的结构示意图;

图2是图1的A-A向视图;

图3是溢流盘的结构示意图;

图4是图3的俯视图。

具体实施方式

图1中箭头所示方向为该处的水流方向。

如图1至图4所示,本实用新型的水冷式电弧炉用环保冷却机构包括电弧炉1、换热器、储水池2和冷却塔,电弧炉1上设有用于冷却电弧炉1的水夹套;电弧炉1及其水夹套均为本领域常规技术,图未示水夹套。

换热器包括换热箱3,换热箱3内沿换热箱3的长度方向设有内管4,内管4外表面均匀间隔设有若干换热盘片5;内管4的进水端连接有第一管路6,第一管路6连接电弧炉1的水夹套的顶部;内管4的出水端连接有第二管路7,第二管路7通入储水池2的一侧底部;换热箱3于内管4进水端处连接有第三管路8,第三管路8的末端开口在冷却塔的正上方;换热箱3于内管4出水端处连接有第四管路9,第四管路9连接所述冷却塔的底部;所述第四管路9上设有用于将冷却塔内的水送入换热箱3的第一循环泵10;

储水池2底部于第二管路7的相对侧连接有第五管路11,第五管路11连接电弧炉1的水夹套的底部。第五管路11上设有用于将储水池2内的水送入电弧炉的水夹套内的第二循环泵19。

所述换热盘片5上均匀分布有多个换热孔12。换热孔12的设置,既降低了换热盘片5对水的阻力、有利于水在换热箱3内的流动,又加快了水与换热盘片5之间的换热速度。

所述冷却塔包括冷却箱13,冷却箱13的底壁中心向上固定连接有竖杆14,竖杆14顶端位于冷却箱13顶部;竖杆14上由上至下均匀间隔连接有若干溢流盘17,溢流盘17的直径由上至下依次增大;第三管路8的末端开口在最上层溢流盘17的正上方。

所述溢流盘17包括盘底15,盘底15周边向上连接有倾斜设置的盘沿16。这样的设置,当上层溢流盘17的水溢流到下层溢流盘17的时候,就不会直接通过下层溢流盘17的边缘直接溢流至更下一层溢流盘,而是只有在该层溢流盘17盛满水后才会继续向下溢流。这样,在工作中每层溢流盘17都盛满了水,因此大大增加了水与空气接触的面积,使水中的热量能够更迅速地被空气带走。

所述冷却箱13的上部侧壁设有风机18,风机18的出风口朝向溢流盘17。这样可以进一步提高水与空气的换热效率,降低水温。

工作时,启动第一循环泵10和第二循环泵19,第二循环泵19将储水池2中的水送入电弧炉1的水夹套内,用于冷却电弧炉1;从水夹套内流出的水温度较高,如直接排放将产生大量的蒸汽,污染工作环境,使厂区墙壁因长期潮湿而受损。本实用新型中,从水夹套内流出的水送入换热箱3,通过换热箱3的内管4时,与管外的冷却水发生热交换。换热盘片5的设置能够大幅提高换热效率,并且因为换热孔12的存在而不过多影响冷却水的流动。经过换热后,从电弧炉1水夹套流出的水的温度大幅降低,最后通过第二管路7注入储水池2的底部。如果第二管路7没有通入储水池2的底部,而是开口在储水池2液面上方,那么从第二管路7仍然会流出少量蒸汽,对环境造成少量蒸汽污染;第二管路7没有通入储水池2的底部,则可以完全避免蒸汽弥散到大气中的现象。第二循环泵19使这部分水在电弧炉1水夹套、换热箱3和储水池2之间循环流动,持续地冷却电弧炉1。

第一循环泵10将冷却塔底部的水送入换热箱3,这部分水在换热箱3内的流向与内管4中水的流向正好相反,形成逆流换热,冷却内管4中水的效率较高。这部分水经第三管路8流出,在水压的作用下流至冷却塔的顶部,流向第一层溢流盘17,并逐级向下溢流。在溢流的过程中,风机18吹风,加速了水与空气的换热。水溢流至冷却塔的冷却箱13底部后,被第一循环泵10重新抽出,进行下一轮换热循环。

以上实施例仅用以说明而非限制本实用新型的技术方案,尽管参照上述实施例对本实用新型进行了详细说明,本领域的普通技术人员应当理解:依然可以对本实用新型进行修改或者等同替换,而不脱离本实用新型的精神和范围的任何修改或局部替换,其均应涵盖在本实用新型的权利要求范围当中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1