移动式冷热一体设备的制作方法

文档序号:15588929发布日期:2018-10-02 18:43阅读:288来源:国知局

本实用新型涉及制冷和制热技术领域,尤其涉及一种无需室外机进行热交换,在单一密封空间中通过压缩机、厚膜加热器及水循环方式实现的移动式冷热一体设备。



背景技术:

目前,市场上普遍采用的制冷制热一体设备主要是各种形式的空调。空调设备目前普遍采用的是应用室外机在两个独立空间内进行热交换的制冷方式,这样固然可以保证室内温度效果,但是制冷过程产生以及排出的热量无法收集利用只能全部排放到外部环境中,造成环境的污染和资源的浪费。并且,空调排出的热量对整体环境有很大的破环作用,加重城市热岛效应,破坏空气结构。尤其是夏天,城市温度居高不下,空调室外机排热是元凶之一。同时,室外机破坏建筑外墙整体性,影响市容市貌,有一定的安全隐患。在安装空调的过程中还须花费大量精力专门设计空调井和管道,这些管道常年使用内部会滋生有害菌群,对人体危害很大。对空调管道的维修,更换也是一项耗时耗力的工程。另外,室外机工作时会伴随产生巨大噪音,造成噪音污染。

从室内制热方面来讲,空调制热功耗大,费电多,使用并不普遍,更多的人偏向于采用暖气片集中供暖的方式。而采用普通暖气片的供暖方式较为粗放,其供热过程的热损失较大,而且固定的暖气片设置方式,不便于清洗更换。



技术实现要素:

为解决现有技术存在的不足,本实用新型提供一种以压缩机制冷,厚膜加热管制热,无室外机,可移动,无热量排出室外,多余热量可二次利用,通过水循环,空气循环热对流进行室内整体降温和升温,即插即用的移动式冷热一体设备。

本实用新型的技术方案为:

移动式冷热一体设备,包括壳体和设置在壳体内的水循环冷却压缩机制冷系统和水循环厚膜加热管制热系统;所述水循环冷却压缩机制冷系统包括制冷散热模组,水泵A,水箱,压缩机和散热水箱,所述制冷散热模组包括表冷器和设置于表冷器一侧的风扇,所述表冷器和风扇固定在水箱上端,所述表冷器通过水泵A与水箱连接;所述压缩机包括压缩机本体和与压缩机本体连接的导冷片和散热片,所述导冷片设置于水箱中,所述散热片设置于散热水箱中;所述水循环厚膜加热管制热系统包括厚膜加热管和与水循环冷却压缩机制冷系统共用的水箱和制冷散热模组,所述厚膜加热管设置于表冷器和水泵A之间,通过管道与表冷器和水泵A连接。

进一步的,所述表冷器上设置有进水管和出水管,所述表冷器通过出水管与水箱连通,所述表冷器进水管与厚膜加热管连接。

进一步的,所述压缩机上缠绕有压缩机集热管,所述压缩机集热管通过水泵B与散热水箱连通。

进一步的,所述散热水箱上端设置有入水口,所述入水口上设置有水净化装置,所述散热水箱的下端设置有出水口。

更进一步的,所述出水口上设置有即热装置和与即热装置连接的温度控制器。

进一步的,所述厚膜加热管从内到外依次包括不锈钢基体,内绝缘介质层,电阻发热层和外绝缘介质层,所述不锈钢基体设置为内层和外层两层结构,且在两层结构中设置有真空腔。

进一步的,所述水箱和散热水箱上设置有保温隔热层。

进一步的,所述导冷片的材质为铜或铝。

本实用新型的有益效果是:

本实用新型的设备制冷制热效果好,冷热一体,体积可定制,无需安装室外机,环保节能,即插即用可移动,对环境无任何影响,人体感觉舒适,能源消耗小,室内热量可储存用于生活使用。

附图说明

图1是本实用新型内部结构示意图。

其中,1、风扇;2、表冷器;3、水箱;4、厚膜加热管;5、水泵A;6、导冷片;7、压缩机;8、压缩机集热管;9、出水口;10、散热水箱;11、散热片;12、水净化装置。

具体实施方式

以下参照附图对本实用新型进行更加详细的说明,但不作为对本实用新型的限定。

如图1所示,移动式冷热一体设备,包括壳体和设置在壳体内的水循环冷却压缩机制冷系统和水循环厚膜加热管制热系统。所述水循环冷却压缩机制冷系统包括制冷散热模组,水泵A 5,水箱3,压缩机7和散热水箱10。所述制冷散热模组包括表冷器2和设置于表冷器2一侧的风扇1,所述表冷器2和风扇1 固定在水箱3上端,所述表冷器2通过水泵A 5与水箱3连接。表冷器2通过水泵A 5与水箱3相连形成循环,制冷系统工作时,由压缩机7系统带走水箱3 中水的热量,在水箱3中通过水泵A 5传送到表冷器2内循环,制冷模组与室内环境进行热交换,吸收室内空气热量,降低大气温度以达到制冷效果;同时通过扇叶送风使室内空气循环,室内温度得以均匀下降,完成室内降温。

所述压缩机7包括压缩机本体和与压缩机本体连接的导冷片6和散热片 11,所述导冷片6设置于水箱3中,没于水面以下。所述散热片11设置于散热水箱10中,没于水面以下。所述压缩机7上缠绕有压缩机集热管8,所述压缩机集热管8通过水泵B与散热水箱10连通。通过在压缩机7外缠绕压缩机集热管8,可以将压缩机7工作产生的一部分热量转入散热水箱10。

所述散热水箱10上端设置有入水口,所述入水口上设置有水净化装置12,外部水源通过过滤、吸附、反渗透等过滤方式,使净化水程度达到直饮水级别。所述散热水箱10的下端设置有出水口9,所述出水口9上设置有即热装置和与即热装置连接的温度控制器。用户通过温度控制器可以自由设置出水的温度,以作生活用水使用。

所述水循环厚膜加热管制热系统包括厚膜加热管4和与水循环冷却压缩机制冷系统共用的水箱3和制冷散热模组。所述厚膜加热管4从内到外依次包括不锈钢基体,内绝缘介质层,电阻发热层和外绝缘介质层,所述不锈钢基体设置为内层和外层两层结构,且在两层结构中设置有真空腔。具有一定的保温作用,可以在一定程度上减少加热的时间,加快加热的效率,减少用户的使用费用。厚膜加热属于面加热,整体受热均匀,由于热量能够及时传导走,所以整个厚膜加热管表面温度不高,不会引起明火,安全性好,使用寿命长。

所述厚膜加热管4设置于表冷器2和水泵A 5之间,通过管道与表冷器2 和水泵A 5连接。具体的,所述表冷器2上设置有进水管和出水管,所述表冷器2通过出水管与水箱3连通,所述表冷器2进水管与厚膜加热管4连接。制热系统工作时,水箱3中的常温水通过水泵A 5传送经过厚膜加热管4加热后进入表冷器2内循环,通过制冷散热模组将热量散发到空气中,以达到室内空气制热的效果,在风扇1的带动下,促进了室内空气循环,提高了室内制热的效果。

水循环冷却压缩机制冷系统和水循环厚膜加热系统分开独立运行,当制冷系统工作时,厚膜加热管4不加热,可以通水,不影响制冷系统内部的水循环。制热系统运行时,水箱3、制冷散热模组和厚膜加热管4进入工作状态并实现内部水循环。

为保证安全以及收集的热量不散发到环境里,所述水箱3和散热水箱10 上设置有保温隔热层。

为提高导冷效率,所述导冷片3的材质为铜或铝。

本实用新型的原理是:

制冷压缩机把制冷剂从低压转换为高压,并使制冷剂在压缩机,散热片,导冷片内不断循环流动并进行形态变换,制冷剂在导冷片中进行液态变气态形态变化,吸收热量从而带走水箱中的热量。制冷剂在散热片中由气态变成液态,热量散发到散热水箱中,从而使系统不断将吸收的热量排放到散热水箱中。制冷压缩机是制冷系统的心脏,制冷系统通过压缩机输入电能,调节压力带动制冷剂形态变化从而将热量不断从水箱排放到散热水箱。压缩机导冷片与水箱中的水进行热交换,吸收水箱中的热量,使水箱中的水温度降低,压缩机压缩制冷剂过程释放的热量通过压缩机散热片被散热水箱中的水吸收,水的比热容非常大,导热性能良好,可以储存大量热量,温度上升到较高系统依然能稳定工作,从而不影响对水箱中水的制冷效果。该套制冷系统无外排热量的特性保证了对环境的无破坏性,制冷系统对产生热量的收集利用降低了能耗。

所述厚膜加热管为一种不锈钢厚膜加热管,当制热系统运行时,水箱中的常温水在水泵作用下经过厚膜加热管,并由厚膜加热管进行加热,厚膜加热管为一种速热型的加热器,加热后的水进入表冷器,通过表冷器进行与空气的热量交换,以达到室内空气的制热效果,热量转换后的冷水流回水箱,从而形成内部水循环。

压缩机和厚膜加热管可靠性高,提高了设备的使用寿命。压缩机工作过程产生的热量无需对外排出,可做二次使用,充分利用了资源又不会对环境造成破坏。厚膜加热管将不锈钢基体设置为内层和外层两层结构,且在两层结构中设置有真空腔,具有一定的保温作用,可以在一定程度上减少加热的时间,加快加热的效率,减少用户的使用费用。厚膜加热管体积小,凹槽设计便于清理水垢,安全性强,使用寿命长。

以上所述的本实用新型实施方式,并不构成对本实用新型保护范围的限定。任何在本实用新型的精神和原则之内所作的修改、等同替换和改进等,均应包含在本实用新型的权利要求保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1