本发明涉及一种具有瞬间储水式结构的电热水器,更详细地,涉及一种即使不直接加热容纳于壳体内部的水,也能够瞬间使大量的温水持续流出的具有瞬间储水式结构的电热水器。
背景技术:
如今,在市面上销售的大部分热水器中,具有水箱且在水箱经常储存规定量的水来使用的储存式成为了主流。这种储存式热水器需要持续加热储存在水箱内的水,因此存在浪费消耗的水和用于加热水的能源的问题。
图1是用于说明现有的电热水器的图。如图1所示,现有的电热水器1包括:储存箱10,其内部容纳有水;加热器20,其设置在储存箱10的下部;供水管11,其设置在储存箱10的下部侧;流出部12,其设置在储存箱10的上部侧。并且,通过供水管11向储存箱10的内部供应的水直接被加热器20加热之后,通过流出部12供应至用户。
但是,这种现有的电热水器1作为直接加热式,采用通过加热器20直接对储存在储存箱10的大量的水进行加热之后,将温水供应给用户的方式,因此具有所储存的水需要利用很长的时间来进行加热的问题。
并且,随着外部的冷水流入到储存箱,储存在储存箱的温水的温度下降,从而存在流出的温水的温度降低的问题。并且,由于向储存箱持续供应新水,因此融化在水中的石灰质、铁等持续蓄积在储存箱及加热器,从而具有储存箱内部严重污染且加热器的换热性能降低的问题。
技术实现要素:
发明所要解决的问题
为了解决上述现有技术的问题,本发明的目的在于,提供一种即使不直接加热容纳于壳体内部的水,也能够瞬间使大量的温水持续流出的具有瞬间储水式结构的热水器。
用于解决问题的方案
为了实现上述目的,本发明提供一种具有瞬间储水式结构的电热水器,其特征在于,包括:壳体,其内部设置有用于容纳水的空间部,在上述壳体的一侧形成有流入部,在上述壳体的另一侧形成有流出部;第一换热管,其容纳于上述壳体的内部的一侧;第二换热管,其容纳于上述壳体的内部的另一侧;加热器,其对上述第一换热管或上述第二换热管施加热量;以及连接部件,其包括连接上述流入部和上述第一换热管的第一连接管、连接上述第一换热管和上述第二换热管的第二连接管、连接上述第二换热管和上述流出部的第三连接管。
并且,本发明提供一种具有瞬间储水式结构的电热水器,其特征在于,上述第一换热管和上述第二换热管分别以缠绕成线圈形状的方式形成,上述加热器位于上述第二换热管的中央。
并且,本发明提供一种具有瞬间储水式结构的电热水器,其特征在于,上述第一换热管位于上述壳体的内部上侧,上述第二换热管位于上述壳体的内部下侧,上述加热器对上述第二换热管施加热量。
并且,本发明提供一种具有瞬间储水式结构的电热水器,其特征在于,在上述第一换热管和上述第二换热管之间还设置有隔膜,在上述隔膜的下部设置有上述加热器。
并且,本发明提供一种具有瞬间储水式结构的电热水器,其特征在于,上述隔膜以覆盖上述第二换热管的外周缘的方式形成,并且在位于上述壳体的内部的水中,与上述加热器或者上述第二换热管进行换热而上升的温水的流动被上述隔膜阻断。
并且,本发明提供一种具有瞬间储水式结构的电热水器,其特征在于,上述隔膜包括:一对侧壁部,其从上述壳体的内部的底部向上部突出,在上述一对侧壁部之间设置有上述第二换热管和上述加热器;上侧部,其一体地连接上述一对侧壁部的上侧。
并且,本发明提供一种具有瞬间储水式结构的电热水器,其特征在于,上述第一换热管设置为多个,上述连接部件还包括:子连接管,其连接彼此相邻的一对上述第一换热管。
并且,本发明提供一种具有瞬间储水式结构的电热水器,其特征在于,上述壳体包括:内部壳体,其设置有上述空间部;外部壳体,其覆盖上述内部壳体的外侧,并且,上述流入部和上述流出部以贯通上述外部壳体和上述内部壳体的状态位于上述空间部。
并且,本发明提供一种具有瞬间储水式结构的电热水器,其特征在于,还包括:连接管,其一侧与上述流入部或者上述第一连接管相连接,另一侧与上述流出部或者上述第三连接管相连接;温度测量传感器,其设置在上述流出部,用于测量通过流出部的水的温度;以及混合阀,其设置在上述连接管,用于打开或关闭上述连接管,并且,当上述温度测量传感器测量的水的温度为预设温度以上时,打开上述混合阀,从而通过上述流入部流入的水经过上述连接管而在上述第三连接管或者上述流出部中进行混合。
并且,本发明提供一种具有瞬间储水式结构的电热水器,其特征在于,还包括:供水部件,其以使容纳于上述壳体的内部的水保持规定的水位的方式进行控制。
并且,本发明提供一种具有瞬间储水式结构的电热水器,其特征在于,上述供水部件,包括:浮子,其设置为通过容纳于上述壳体内部的水的浮力而上升或者下降;浮子开关,其根据上述浮子的位置调节水的供应;以及供应管,其向上述浮子开关供应水。
发明效果
本发明具有以下效果:由于壳体内部设置有第一换热管和第二换热管,因此,流入到壳体内部的水在经过第一换热管和第二换热管时变成温水,从而即使不直接加热容纳于壳体内部的大量的水,也能够瞬间使大量的温水持续流出。
并且,本发明具有以下效果:由于移动到第二换热管的水通过加热器及隔膜而使温度双重上升,因此,经过第二换热管而通过流出部流出的水的温度为40℃以上的高温。
并且,本发明具有以下效果:外部的冷水无法流入到壳体内,从而容纳于壳体内的水的温度不会急剧下降,并且,不需要周期性地更换容纳于壳体内的水,从而壳体内部不会被水的异物而受到污染。
并且,本发明具有以下效果:由于壳体以双重结构构成,因此轻易实现与外部的热阻断,提高隔热性以及耐久性。
附图说明
图1是用于说明现有的电热水器的图。
图2是概略性示出根据本发明的优选实施例的具有瞬间储水式结构的电热水器的图,图3是概略性示出根据本发明的优选实施例的具有瞬间储水式结构的电热水器的内部的图。
图4是用于说明根据本发明的优选实施例的具有瞬间储水式结构的电热水器的连接部件的图。
图5是用于说明根据本发明的优选实施例的具有瞬间储水式结构的电热水器的作用的图。
图6是为说明根据本发明的优选实施例的具有瞬间储水式结构的电热水器的第一换热管设置为多个的状态而概略性示出的图。
附图标记说明:
100、102:电热水器
110:壳体110a:内部壳体;
110b:外部壳体112:空间部;
114:流入部116:流出部;
118:排水部120:第一换热管;
122:第一换热管130:第二换热管;
140:加热器150:连接部件;
152:第一连接管153:子连接管;
154:第二连接管156:第三连接管;
160:隔膜162:侧壁部;
164:上侧部170:供水部件;
172:浮子174:浮子开关;
176:供应管。
具体实施方式
以下,参照附图对根据本发明的优选实施例的具有瞬间储水式结构的电热水器进行更加详细的说明。
图2是概略性示出根据本发明的优选实施例的具有瞬间储水式结构的电热水器的图,图3是概略性示出根据本发明的优选实施例的具有瞬间储水式结构的电热水器的内部的图。
参照图2及图3,根据本发明的优选实施例的具有瞬间储水式结构的电热水器100包括壳体110、第一换热管120、第二换热管130、加热器140及连接部件150,并且还可包括隔膜160及供水部件170。
壳体110的内部设置有用于容纳水的空间部112,并且上述壳体110以双重结构构成,上述壳体110可以包括:内部壳体110a,其设置有上述空间部112;外部壳体110b,其覆盖上述内部壳体110a的外侧。如此,当壳体110以双重结构构成时,轻易实现与外部的隔热,从而具有提高隔热性及耐久性的效果。并且,壳体110的下侧的一侧和另一侧分别设置有流入部114和流出部116,且排水部118位于流入部114和流出部116之间。流入部114、流出部116及排水部118以贯通外部壳体110b和内部壳体110a的状态位于空间部112。流入部114以使外部的水流入的方式构成,流出部116构成为使通过后述的第二换热管130的温水流出至壳体110的外部。排水部118构成为使容纳于空间部112的水排出至外部。
第一换热管120位于空间部112的上侧,并且第二换热管130能够以与第一换热管120的下部隔开的方式设置在空间部112的下侧。例如,第一换热管120和第二换热管130通过管缠绕成线圈形状的方式来形成。上述线圈形状使与容纳于空间部112的水的换热面积变宽,从而增加换热效率。
加热器140对第一换热管120或者第二换热管130施加热量,例如,加热器140以通过电来发散热量的方式构成。例如,这种加热器140可以构成为位于第二换热管130的中央而向第二换热管130供应热量。并且,在第三连接管156或者流出部116设置有温度传感器(未图示),且还可以设置有根据上述温度传感器测量的温度而打开/关闭加热器140的电源的电源开关(未图示)。
在图4中说明连接部件150。
隔膜160设置在第一换热管120和第二换热管130之间,并且上述隔膜160以覆盖第二换热管130的外周缘的方式构成。这种隔膜160包括:一对侧壁部162,其从内部壳体110a的内部的底部向上部突出,在上述一对侧壁部162之间设置有第二换热管130和加热器140;上侧部164,其一体地连接一对侧壁部162的上侧。侧壁部162及上侧部164形成为板形态,在由侧壁部162及上侧部164形成的空间设置有第二换热管130和加热器140。因此,容纳于壳体110的空间部112的水中,与加热器140或者第二换热管130进行换热而上升的温水的流动被隔膜160阻断,从而位于隔膜160下部的水的温度高于位于第一换热管120周围的水的温度。在图5中再次说明上述内容。
供应部件170以使容纳于壳体110的空间部112的水保持规定的水位的方式进行控制,例如,供应部件170包括:浮子(float)172,其设置为由容纳于空间部112的水的水位而上升或者下降;浮子开关174,其通过铰链与浮子172结合,根据浮子172的位置调节水的供应;供应管176,其向浮子开关174供应水。浮子172构成为通过水的浮力而浮出容纳于空间部112的水面上。供应管176与流入部114相连接,从而将向壳体110流入的水供应至浮子开关174。当浮子172上升到空间部112的预定高度以上时,浮子开关174阻断供应管176的水供应至空间部112,当浮子172下降为低于空间部112的预定高度时,浮子开关174允许供应管176的水供应至空间部112。如此,容纳于空间部112的水通过供水部件170来保持规定的水位。
图4是用于说明根据本发明的优选实施例的具有瞬间储水式结构的电热水器的连接部件的图,图5是用于说明根据本发明的优选实施例的具有瞬间储水式结构的电热水器的作用的图。
参照图4及图5,连接部件150包括:第一连接管152,其连接流入部114和第一换热管120;第二连接管154,其连接第一换热管120和第二换热管130;以及第三连接管156,其连接第二换热管130和流出部116。
并且,通过流入部114流入到壳体110内部的外部的水(即自来水等直供水)经过第一连接管152移动至第一换热管120。此时,在壳体110的空间部112容纳有水,且空间部112的水通过加热器140而具有比直供水温度高的温度。因此,移动至第一换热管120的水与容纳于壳体110的空间部112的水进行换热,从而水的温度得到第一次上升。
接着,沿着第一换热管120而移动的水经过第二连接管154移动至第二换热管130。其中,由于在第二换热管130设置有加热器140,因此,移动至第二换热管130的水与加热器140进行换热,从而其温度得到第二次上升。此时,由于在第二换热管130的外侧设置有隔膜160,因此,在容纳于壳体110的水中,与加热器140或者第二换热管130进行换热而上升的温水的流动被上述隔膜160阻断。因此,位于隔膜160和第二换热管130之间的温水的热量无法移动至壳体110的上部,而与第二换热管130进行换热,从而沿着第二换热管130移动的水的温度得到第三次上升。
如此,移动至第二换热管130的水通过加热器140及隔膜160而使温度双重上升,因此,经过第二换热管130而通过流出部116流出的水的温度为40℃以上的高温。
并且,通过流入部114流入到壳体110内部的水在经过第一换热管120和第二换热管130时变成温水,因此,即使不直接加热容纳于壳体110内部的大量的水,也能够瞬间使大量的温水流出。
并且,外部的冷水无法流入到壳体110内,从而容纳于壳体110的水的温度不会急剧下降,并且,不需要周期性更换容纳于壳体110的水,从而壳体110的内部不会被水的异物而受到污染。
另一方面,本发明还可以包括:连接管(未图示),其一侧与流入部114或者第一连接管152相连接,另一侧与流出部116或者第三连接管156相连接;温度测量传感器(未图示),其设置在上述流出部116,用于测量通过流出部116的水的温度;混合阀(未图示),其设置在上述连接管,用于打开或关闭上述连接管。并且,当上述温度测量传感器测量的水的温度为预设温度以上时,即当上述温度测量传感器测量的水的温度为用户无法用作温水的程度的高温时,打开上述混合阀,从而通过流入部114流入的冷水经过上述连接管而在第三连接管156或者流出部116中进行混合。
图6是为说明根据本发明的优选实施例的具有瞬间储水式结构的电热水器的第一换热管设置为多个的状态而概略性示出的图。
参照图5及图6,本发明的优选实施例的具有瞬间储水式结构的电热水器102根据壳体110的内部大小等,且为了进一步提高第一换热管120、122的换热效率,也可以设置多个第一换热管120、122。此时,连接部件150还可以包括:子连接管153,其连接彼此相邻的一对第一换热管120、122。
尽管在上述实施例中详细地说明了本发明,但是本发明并不限于此,本领域技术人员明确知道,在本发明的技术领域范围内,可以进行多种变形及修改,如果这种变形及修改属于权利要求书的范畴,则其技术思想同样也属于本发明。