一种集中供热系统生产自动调节方法与流程

文档序号:19669561发布日期:2020-01-10 22:21阅读:274来源:国知局
一种集中供热系统生产自动调节方法与流程

本发明属于热能技术领域,尤其涉及一种基于用户端热力消耗分析或预测的集中供热系统生产自动调节方法。



背景技术:

随着城市的不断发展和城市规模的不断扩大,集中供热系统对于热力的需求呈爆炸式增长。集中供热系统的供热负载可以分为基本负载和峰值负载。由于技术等原因,在峰值负载的情况下,供热公司通常使用相比起来价格更加高昂的燃料,例如煤炭、天然气等化石燃料,进行生产。因此,提高集中供热系统的能源利用率已被认为是关于减少资源浪费和节省成本的关键问题。

为了提高能源利用率,了解用户端消耗模式和精确预测用户端峰值消耗量非常重要。同时,由于用户端行为的不可预测性和多种影响因素(如天气条件和建筑物特征等)的共同影响,集中供热系统的峰值消耗量变得难以预测。因此,通过实时地精确预测用户端峰值消耗量,即峰值热负荷,并将其反馈至供热公司,供热公司能够以每小时或每15分钟为一个阶段对集中供热系统的峰值负载进行动态调整,从而优化供热能源生产,提高集中供热系统中燃料的使用效率,达到降低运营成本、节约能源、保护环境的目的。

当前,集中供热系统生产优化方法主要可分为两种:基于人类智慧的人工调整方法和基于传统机器学习模型的自动调整方法。前者主要基于工人的已有经验,人工观察仪器仪表做出判断,实时性较高,但是耗费人工成本较高,且无法做到精确微调,准确度较低;后者相对于前者预测准确度略有提升,但是模型训练时间较长、内存消耗较大、实时性较差,难以满足实际需求。

目前,已有研究人员对热负荷预测进行了大量的研究,并获得了很大的进展。在近年来的发展中,研究人员提出了多种方法。传统机器学习模型,包括线性回归(linearregression,lr)、混合高斯模型(gaussianmixturemodel,gmm)、支持向量回归(supportvectorregression,svr)、人工神经网络(artificialneuralnetwork,ann)等已被应用于热负荷预测问题,但这些方法难以动态反映热负荷变化,预测的准确率较低。针对上述的问题,目前尚未提出有效的解决方案。



技术实现要素:

本发明针对上述技术问题,提出了一种集中供热系统生产自动调节方法,该方法旨在保证实时性并且提高模型预测准确率的同时降低模型训练时间,并且减少内存消耗。

为达到上述目的,本发明通过以下技术方案来具体实现:

本发明提供了一种集中供热系统生产自动调节方法,包括:

步骤一、通过传感器实时获取集中供热系统对应的所有用户端整体峰值消耗量,并将所述整体峰值消耗量记录为热负荷序列;

步骤二、基于时域与频域变换,将热负荷序列转换为频谱图;

步骤三、通过时间序列预测模型分别对频谱图的每个频段进行预测得到频域预测频谱图;

步骤四、利用时域与频域变换,将频域预测频谱图转换为热负荷预测值序列;

步骤五、根据热负荷预测值序列,动态调整集中供热系统中供暖设备输出功率,从而动态调整集中供热系统的峰值负载。

所述步骤一,包括:

传感器根据预设时间段实时获取所有用户端在该时间段内整体峰值消耗量,并记录为热负荷序列,将获取到的所有用户端整体峰值消耗量作为热负荷预测的历史数据。

其中,时域与频域变换包括但不限于快速傅里叶变换、离散傅里叶变换、短时傅里叶变换或小波变换。

所述步骤二,时域与频域变换为快速傅里叶变换时,包括:

将获取到的热负荷序列分帧,利用快速傅里叶变换将所有热负荷序列分帧转换为频谱帧,将所有频谱帧的频段对齐并进行组合拼接得到频谱图。

所述步骤三中,使用的时间序列预测模型包括但不限于:线性回归模型、整合自回归滑动平均模型、支持向量回归模型、循环神经网络模型、混合高斯模型或长短时记忆模型。

其中,使用的时间序列预测模型为长短时记忆模型时,所述步骤三,包括:

获取频谱图中同一频段的频谱值,将同一频段的所有频谱值进行拼接,得到频域序列;

分别利用频域序列训练每个频段的长短时记忆模型,将训练好的长短时记忆模型用于频域序列预测,得到每个频段对应的频域预测值序列;

将所有频域预测值序列的预测时间点对齐并进行组合拼接,得到频域预测频谱图。

其中,时域与频域变换为快速傅里叶反变换时,所述步骤四,包括:

分别提取获取到的频域预测频谱图中同一时间点的频域预测值得到频域预测值向量;

利用快速傅里叶反变换将所有频域预测帧转换为时域预测帧;

将第一个时域预测帧的前一半作为热负荷预测值序列的起始,计算第一个时域预测帧后一半和第二个时域预测帧前一半的逐元素均值并拼接到热负荷预测值序列,以此类推,直到计算倒数第二个时域预测帧后一半和最后一个时域预测帧前一半的逐元素均值并拼接到热负荷预测值序列,最终将最后一个时域预测帧的后一半作为热负荷预测值序列的结尾并拼接到热负荷预测值序列,得到热负荷预测值序列。

所述步骤五,包括:

根据热负荷预测值序列,每小时动态调整集中供热系统的峰值负载,当集中供热系统的当前峰值负载高于预测负载值时降低集中供热系统中供暖设备的输出功率至预测负载水平,当集中供热系统的当前峰值负载低于预测负载值时提高集中供热系统中供暖设备的输出功率至预测负载水平。

本发明的有益效果是:

(1)考虑到集中供热网络中热负荷序列自身的时序特性,遵循自然规律,将其转换为频谱图,并将频谱图分解为多个频段的频谱序列,并分别进行预测;

(2)在频谱序列预测中,考虑频谱序列与原始热负荷序列相对应的时序特性,运用长短时记忆模型分别对每个频谱序列进行建模并预测,得到频域预测值序列;

(3)在得到频域预测值序列和对应的频域预测频谱图后,将频域预测频谱图中不同时间点的频域预测值向量分别时域预测值向量,并组合成热负荷预测值序列,从而对热负荷序列的自身特性进行综合有效地分析,提高热负荷序列预测的准确度;

(4)将上述热负荷预测值反馈给供热公司,用于更加准确地动态调整集中供热系统的峰值负载。

附图说明

图1所示为本发明提出的一种集中供热系统生产自动调节方法的原理图示意图。

具体实施方式

为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

实施例一

如图1所示,本发明实施例一公开了一种集中供热系统生产自动调节方法,包括:

步骤一、通过传感器实时获取集中供热系统对应的所有用户端整体峰值消耗量,并将所述整体峰值消耗量记录为热负荷序列;

步骤二、基于时域与频域变换,将热负荷序列转换为频谱图;

步骤三、通过时间序列预测模型分别对频谱图的每个频段进行预测得到频域预测频谱图;

步骤四、利用时域与频域变换,将频域预测频谱图转换为热负荷预测值序列;

步骤五、根据热负荷预测值序列,动态调整集中供热系统中供暖设备输出功率,从而动态调整集中供热系统的峰值负载。

步骤一具体包括:

通过传感器实时(每小时)获取所有用户端在一小时内整体峰值消耗量,并记录为热负荷序列x=[x1,…xn],xi,i=1,…,n是第i小时获取到的所有用户端整体峰值消耗量,将获取到的所有用户端整体峰值消耗量作为热负荷预测的历史数据,达到获取供热系统的历史峰值负载数据的目的。

所述步骤二具体包括:

将步骤一中获取到的热负荷序列分帧,利用快速傅里叶变换将所有热负荷序列帧转换为频谱帧,将所有频谱帧的频段对齐并进行组合拼接得到频谱图,以此达到实时提取热负荷序列数据的时间-频谱信息的效果,达到降低数据信息提取过程中的时间消耗的目的,解决了时间序列趋势-季节分解中的实时性问题。

具体地,将热负荷序列x=[x1,…xn]分帧,每帧长度为m,滑动步长为得到x′=[w1,…,wc],其中,m是2的整次幂,热负荷序列帧wi=[x(i-1)·m+1,…,xi·m]t

基于快速傅里叶变换,将分帧后的热负荷序列x′中的每一帧w1,…,wc分别转换为对应频谱帧f1,…,fc,其中fi=[fi(1),…,fi(m)]t,i=1,…,c的长度为m的列向量,fi(1)表示低频分量,fi(m)表示最高频分量;

将所有频谱帧f1,…,fc拼接,得到频谱图f=[f1,…,fc]。

一应用实例,比如通过传感器实时获取热负荷序列x=[199.46,186.47,193.19,209.62,213.80,204.77,209.04,206.73,206.42,194.41],序列长度n=10每帧长度m=4,则帧数c=4,可得到帧

w1=[199.46,186.47,193.19,209.62]t

w2=[193.19,209.62,213.80,204.77]t

w3=[213.80,204.77,209.04,206.73]t

w4=[209.04,206.73,206.42,194.41]t

将w1、w2、w3和w4分别转换为对应频谱帧,得到对应频谱帧

f1=fft(w1)=[788.74,6.27+23.15i,-3.44,6.27+23.15i]t

f2=fft(w2)=[821.38,-20.61-4.85i,-7.4,-20.61+4.85i]t

f3=fft(w3)=[834.34,4.76+1.96i,11.34,4.76+4.85i]t

f4=fft(w4)=[816.60,2.62-12.32i,14.32,2.62+12.32i]t

将所有频谱帧f1,…,fc拼接得到频谱图

进一步地,所述步骤三具体包括:

分别提取步骤二中获取到的频谱图中同一频段的频谱值,拼接所有同一频段的频谱值得到频域序列,分别利用频域序列训练每个频段的长短时记忆模型,将训练好的长短时记忆模型用于频域序列预测,得到每个频段对应的频域预测值序列,将所有频域预测值序列的预测时间点对齐并进行组合拼接,得到频域预测频谱图,以此达到利用长短时记忆模型逐小时预测热负荷序列频谱的效果,达到利用热负荷序列的频谱信息分析用户端热力消耗量时序特性和变化趋势的目的,解决了频谱图预测的技术问题。

具体地,将频谱图f拆分,并按频率分别组合成频域序列

g(1),…,g(m),其中,g(j)=[f1(j),…,fc(j)],j=1,…,m;

分别对于g(1),…,g(m)训练各自的长短时记忆模型lstm(1),…,lstm(m),并使用训练好的长短时记忆模型lstm(1),…,lstm(m)分别对g(1),…,g(m)进行预测,得到频域预测值序列j=1,…,m是长度为的行向量,表示预测时长,是时域热负荷预测值序列长度;

将所有频域预测值序列拼接,得到频域预测频谱图

一应用实例,比如步骤二应用实例中得到的频谱图

对齐进行拆分,得到频域序列

g(1)=[788.74,821.38,834.34,816.60];

g(2)=[6.27+23.15i,-20.61-4.85i,4.76+1.96i,2.62-12.32i];

g(3)=[-3.44,-7.4,11.34,14.32];

g(4)=[6.27+23.15i,-20.61+4.85i,4.76+1.96i,2.62+12.32i];

使用训练好的长短时记忆模型lstm(1),…,lstm(4)分别对g(1),…,g(4)进行预测,得到

将所有频域预测值序列拼接,得到频域预测频谱图

进一步地,所述步骤四具体包括:

分别提取步骤三中获取到的频域预测频谱图中同一时间点的频域预测值得到频域预测值向量,利用快速傅里叶反变换将所有频域预测帧转换为时域预测帧,将所有时域预测帧按照时间顺序错位求均值并拼接得到热负荷预测值序列,其中错位求均值并拼接包括:将第一个时域预测帧的前一半作为热负荷预测值序列的起始,计算第一个时域预测帧后一半和第二个时域预测帧前一半的逐元素均值并拼接到热负荷预测值序列,以此类推,直到计算倒数第二个时域预测帧后一半和最后一个时域预测帧前一半的逐元素均值并拼接到热负荷预测值序列,最终将最后一个时域预测帧的后一半作为热负荷预测值序列的结尾并拼接到热负荷预测值序列,得到热负荷预测值序列,以此达到通过频域预测频谱图获得时域的热负荷预测值序列的效果,达到将频域预测值快速变换为时域预测值的目的,解决了快速将预测值从频域转换至时域的技术问题。

具体地,将频域预测频谱图拆分,并按时间顺序分别组合成不同时间点的频域预测帧其中,

分别进行快速傅里叶反变换,得到时域预测帧的长度为m;

将时域预测帧按照时间顺序错位求均值并拼接得到热负荷预测值序列其中,

q=mod(k,m),r=mod(k+m/2,m)。

一应用实例,比如步骤三应用实例中得到的频域预测频谱图

对齐进行拆分,得到频域预测帧

分别进行快速傅里叶反变换,得到时域预测帧

将时域预测帧按照时间顺序错位求均值并拼接得到热负荷预测值序列

即为后10小时的预测负载值。

进一步地,所述步骤五具体包括:

根据热负荷预测值序列,每小时动态调整供热系统的峰值负载,当供热系统的当前峰值负载高于预测负载值时降低供热系统中供暖设备的输出功率至预测负载水平,当供热系统的当前峰值负载低于预测负载值时提高供热系统中供暖设备的输出功率至预测负载水平,以此达到动态调整供热系统的峰值负载与热负荷预测值序列中的预测值保持一致的效果,解决了基于用户端热力消耗分析自动调节集中供热系统生产的技术问题,达到降低运营成本、节约能源、保护环境的目的。

一应用实例,比如供热系统的当前峰值负载是194.41兆瓦特,预测下一小时内峰值负载是199.63兆瓦特,高于当前峰值负载,则提高供热系统中供暖设备的输出功率至199.63兆瓦特;再如供热系统的当前峰值负载是199.63兆瓦特,预测下一小时内峰值负载是199.40兆瓦特,低于当前峰值负载,则降低供热系统中供暖设备的输出功率至199.40兆瓦特。

本发明实施例一提供的一种集中供热系统生产自动调节方法,通过传感器实时获取所有用户端整体峰值消耗量,并记录为热负荷序列;利用快速傅里叶变换,将热负荷序列转换为频谱图;通过长短时记忆模型分别对频谱图的每个频段进行预测得到频域预测频谱图;利用快速傅里叶反变换,将频域预测频谱图转换为热负荷预测值序列;根据热负荷预测值序列中下一小时的峰值负载预测值,自动调整供热系统的峰值负载。通过本发明提供的集中供热系统生产自动调节方法,可以克服现有基于人类智慧的人工调整方法中调节准确度低、耗费人工成本高的缺陷,解决了现有基于机器学习模型的自动调整技术中机器学习模型训练时间长、计算资源和内存资源消耗大、难以实时调节的缺陷,在保证实时性的同时,提高模型预测准确率的同时降低模型训练时间,并且减少计算资源和内存消耗,降低了人工成本。

本发明相对于现有技术而言,(1)考虑到集中供热网络中热负荷序列自身的时序特性,遵循自然规律,将其转换为频谱图,并将频谱图分解为多个频段的频谱序列,并分别进行预测;(2)在频谱序列预测中,考虑频谱序列与原始热负荷序列相对应的时序特性,运用长短时记忆模型分别对每个频谱序列进行建模并预测,得到频域预测值序列;(3)在得到频域预测值序列和对应的频域预测频谱图后,将频域预测频谱图中不同时间点的频域预测值向量分别时域预测值向量,并组合成热负荷预测值序列,从而对热负荷序列的自身特性进行综合有效地分析,提高热负荷序列预测的准确度;(4)将上述热负荷预测值反馈给供热公司,用于更加准确地动态调整集中供热系统的峰值负载。

上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。

需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1