存取共用型压缩空气储能蓄热系统的制作方法

文档序号:19836124发布日期:2020-02-04 13:02阅读:140来源:国知局
存取共用型压缩空气储能蓄热系统的制作方法

本发明涉及储能技术领域,尤其涉及一种存取共用型压缩空气储能蓄热系统。



背景技术:

当前,我国清洁能源发电源迅速发展,以水电、光伏、风电为代表的新型清洁可再生能源成为我国建设清洁能源电站的首要选择。由于复杂的电源结构、电网结构、电价构成及历史因素影响等原因,造成了电力资源配置扭曲等突出矛盾,且受限于常规电源特性和电网结构,新能源消纳问题突出。大规模电力储能技术可有效解决可再生能源的不稳定性、调整电网峰谷、改善电力系统经济性和稳定性。

压缩空气储能因不需要燃料的补燃,环境友好性佳,目前得到大力推广,但是如何提高先进绝热压缩空气储能技术的系统效率,降低运行成本也成了该技术领域的研究热点之一。



技术实现要素:

本发明实施例提供一种存取共用型压缩空气储能蓄热系统,用以解决现有技术中能效不高的缺陷。

本发明实施例提供一种存取共用型压缩空气储能蓄热系统,包括:蓄热装置,所述蓄热装置包括多个蓄热器,所述蓄热器具有用于填充蓄热介质的蓄热腔和与所述蓄热腔隔离的换热腔,多个所述蓄热器的所述换热腔并联连接于所述蓄热装置的换热流路,且多个所述换热腔中的至少部分可选择性地与所述换热流路连通;压缩机,所述压缩机与所述换热流路相连;储气装置,所述储气装置的进口和出口分别连接于所述换热流路的两端;膨胀机,所述膨胀机与所述换热流路相连。

在一些实施例中,所述压缩机为多个,多个所述压缩机串联连接,且沿压缩气路相邻的所述压缩机分布于所述换热流路的异侧。

在一些实施例中,所述膨胀机为多个,多个所述膨胀机串联连接,且沿膨胀气路相邻的所述膨胀机分布于所述换热流路的异侧。

在一些实施例中,所述蓄热器包括多个子蓄热器,每个所述子蓄热器均具有所述蓄热腔和所述换热腔,且同一个所述蓄热器的多个所述换热腔与所述换热流路同步连通或断开。

在一些实施例中,所述子蓄热器包括第一管和第二管,所述第二管套设在所述第一管外,且所述第二管与所述第一管之间限定出所述蓄热腔,所述第一管限定出所述换热腔。

在一些实施例中,所述子蓄热器包括第一管、第二管、第三管,所述第三管、所述第二管、所述第一管从外到内顺次套设,且所述第二管与所述第一管之间限定出所述蓄热腔,所述第三管和所述第二管之间以及所述第一管分别限定出所述换热腔。

在一些实施例中,所述换热腔为直线型。

在一些实施例中,同一个所述蓄热器的多个所述子蓄热器的换热腔并联连接。

在一些实施例中,同一个所述蓄热器的多个所述子蓄热器并排设置。

在一些实施例中,同一个所述蓄热器的多个所述换热腔通过共同的控制阀连接于所述换热流路。

本发明实施例的存取共用型压缩空气储能蓄热系统,通过设计了存、取共用的蓄热装置以及换热介质自流动的方案,不仅可以大幅降低投资成本,还可以节省运行电损耗以及空气加热和冷却时的压降损失,提高系统效率,通过设计可独立并入换热流路的多个蓄热器,确保存储的热能为高温度的高品质热能。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例提供的存取共用型压缩空气储能蓄热系统的结构原理图;

图2是本发明实施例提供的存取共用型压缩空气储能蓄热系统的一种子蓄热器的横截面示意图;

图3是本发明实施例提供的存取共用型压缩空气储能蓄热系统的一种子蓄热器的纵截面示意图;

图4是本发明实施例提供的存取共用型压缩空气储能蓄热系统的另一种子蓄热器的横截面示意图。

附图标记:

10-蓄热装置;11-蓄热器;12-子蓄热器;13-第一管;14-第二管;15-第三管;16-蓄热介质;17-换热腔;18-控制阀;19-换热流路;

20-储气装置;31-一级压缩机;32-二级压缩机;33-三级压缩机;41-一级膨胀机;42-二级膨胀机;a/b/c-电动机;d/e-发电机。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

下面参考图1-图4描述本发明实施例的存取共用型压缩空气储能蓄热系统。

如图1所示,本发明实施例的存取共用型压缩空气储能蓄热系统包括:蓄热装置10、压缩机、储气装置20和膨胀机。

其中,蓄热装置10包括多个蓄热器11,蓄热器11用于储能且在需要时释能,比如可以将多余的电能通过热能的方式存储,在需要使用时再释放热能。

蓄热器11具有蓄热腔和换热腔17,蓄热腔用于填充蓄热介质16,蓄热介质16包括但不限于熔盐,换热腔17与蓄热腔隔离,并可以通过中间的隔离层导热,隔离层为热的良导体制成,比如铜、不锈钢、铝等金属。

多个蓄热器11并联连接,多个蓄热器11的换热腔17并联连接于蓄热装置10的换热流路19,且多个换热腔17中的至少部分可选择性地与换热流路19连通。比如,每个蓄热装置10通过各自对应的控制阀18连接于换热流路19。

压缩机与蓄热器11的换热流路19相连,压缩机的工作介质(可以为空气)即为换热介质。压缩机可以为空气压缩机,压缩机用于将空气压缩,在压缩过程会使空气增压升温,压缩机可以连接有电动机,比如图1中的压缩机通过电动机a/b/c驱动,电动机可以用风电、光伏电等不便于上网的可再生电驱动。

膨胀机与换热流路19相连,膨胀机的工作介质也为换热介质。膨胀机可以利用压缩气体膨胀降压时向外输出机械功,且会使气体温度降低,膨胀机用于将压缩空气的内能和压力势能转化为机械能输出,比如膨胀机可以连接有发电机d/e,以驱动发电机d/e发电。

储气装置20的进口和出口分别连接于换热流路19的两端,储气装置20用于存储高压气体,比如储气装置20可以包括管线钢储气装置20。储气装置20可以通过保温处理,保持内部存储的气体的热能。换热流路19的两端指换热流路19的分别与换热腔17的两端相连的两个总干路。

在储能阶段,压缩机工作,换热介质(可以为空气等气体)流经换热腔17,并将热能传递给蓄热腔内的蓄热介质16,比如蓄热腔内的熔盐吸热升温融化,这样可以将换热腔17内的换热介质的能量传递给蓄热腔内的蓄热介质16存储。换热后的换热介质(高压气体)可以存储于储气装置20。

在释能阶段,储气装置20中存储的换热介质(高压气体)流经换热腔17,蓄热腔内的蓄热介质16将热量传递给换热腔17的换热介质,使换热介质升温后流入膨胀机做功以输出能量,比如蓄热腔内的熔盐放热降温凝固,这样可以将蓄热腔内的蓄热介质16存储的热能释放。

换言之,该蓄热装置10中蓄能和释能使用的是同样的换热腔17,也就是说,在储能阶段高温的换热介质与释能阶段低温的换热介质流经的是同样的换热腔17,这样使得整个蓄热器11的结构简单。

另外,储能和势能时流动的介质为高压的换热气体,由系统运行时气体内部的压差驱动,蓄热介质无需流动,这样不用设置驱动泵。由于蓄热介质16无需流动,较相关技术中驱动蓄热介质16流动的方案可以节省运行电损耗和驱动泵的建设成本。

可以理解的是,在储能阶段,可以通过控制各个蓄热器11与换热流路19的连通状态,实现各个蓄热器11的逐个蓄能。比如图1中,每个蓄热器11可以通过各自对应的控制阀18来控制自身与换热流路19的连通状态,在当前的蓄热器11内的熔盐全部达到设计储能温度时,关闭当前蓄热器11的分支控制阀18,开启其他未蓄热蓄热器11的控制阀18,并以此类推。

当然,也可以通过控制控制阀18的开闭状态,实现多个蓄热器11同步并联蓄能或释能,或者通过在蓄热器11的两端均设置控制阀18,还可以控制多个蓄热器11同步串联蓄热。

同样,在释能阶段,可以通过控制各个蓄热器11与换热流路19的连通状态,实现各个蓄热器11的多种释能模式。

这样,可以根据当前储能或释能的需求,选择合适数目的蓄热器11工作或者合适的工作模式,确保存储的热能为高温度的高品质热能。

根据本发明实施例的存取共用型压缩空气储能蓄热系统,通过设计了存、取共用的蓄热装置10以及换热介质自流动的方案,不仅可以大幅降低投资成本,还可以节省运行电损耗以及空气加热和冷却时的压降损失,提高系统效率,通过设计可独立并入换热流路19的多个蓄热器11,有利于该系统的容量扩充及模块化运行。

在一些实施例中,本发明实施例的存取共用型压缩空气储能蓄热系统包括多个压缩机,多个压缩机串联连接,这样可以形成多级压缩的模式,使得存入储气装置20的气体压力足够大。

如图1所示,沿压缩气路相邻的压缩机分布于换热流路19的异侧。换言之,相邻两级的压缩机分别分布于蓄热装置10的两侧。压缩气路指储能阶段,压缩气体的流路。比如图1中一级压缩机31布置于蓄热装置10的上侧(图1中的上),二级压缩机32布置于蓄热装置10的下侧(图1中的下),三级压缩机33布置于蓄热装置10的上侧(图1中的上)。经过一级压缩机31出口的高温空气加热蓄热器11内的蓄热介质16后,流动到蓄热装置10下侧。将二级压缩机32布置在蓄热器11的下侧,此时经过换热出口的中压空气正好通过二级压缩机32进一步压缩,避免将二级压缩机32设置到上侧时需要增加空气引出管和增加空气压降的问题。同理将三级压缩机33放置于蓄热器11的上侧,以承接来自二级压缩机32的高压空气。

需要说明的是,相关技术中,大规模的压缩空气储能系统的压降很严重,发明人通过大量研究发现,该压降来源于空气流入引出管导致的长且拐弯的流路,本申请通过将相邻两级压缩机分别分布于蓄热装置10的两侧,可以省掉空气流入引出管的建设成本,且大幅降低整个系统的压降,增强系统储能效率。

在一些实施例中,本发明实施例的存取共用型压缩空气储能蓄热系统包括多个膨胀机,多个膨胀机串联连接。这样可以形成多级膨胀的模式,可以充分利用各个阶段的压力,释能效率更高。

如图1所示,沿膨胀气路相邻的膨胀机分布于换热流路19的异侧。换言之,相邻两级的膨胀机分别分布于蓄热装置10的两侧。膨胀气路指释能阶段,气体的流路。比如图1中一级膨胀机41布置于蓄热装置10的上侧(图1中的上),二级膨胀机42布置于蓄热装置10的下侧(图1中的下)。本申请通过将相邻两级膨胀机分别分布于蓄热装置10的两侧,可以省掉空气流入引出管的建设成本,且大幅降低整个系统的压降,增强系统释能效率。

蓄热器11包括多个子蓄热器12,如图2-图4所示,每个子蓄热器12均具有蓄热腔和换热腔17,图2-图4中的蓄热腔已填充有蓄热介质16,且同一个蓄热器11的多个换热腔17与换热流路19同步连通或断开。

换言之,每个蓄热器11实质是子蓄热器组,这样在蓄热容量一定的情况下,可以将每个子蓄热器12设计的较小,对应地,每个蓄热腔和每个换热腔17的横截面积可以做的较小,可以提高换热效率。

同一个蓄热器11的多个子蓄热器12的换热腔17并联连接,即当某蓄热器11工作时,该蓄热器11的多个子蓄热器12同步并联工作,以提高每个蓄热器11的换热速度。

同一个蓄热器11的多个子蓄热器12并排设置,以便于整个蓄热器11的封装以及换热腔17之间的并联连接。

如图1所示,同一个蓄热器11的多个换热腔17通过共同的控制阀18连接于换热流路19,控制对应的控制阀18的通断状态,即可实现每个蓄热器11的多个子蓄热器12的并联通断。

如图2-图4所示,换热腔17为直线型。这样在储能或释能阶段,相较于相关技术中的u型回路,可以大幅降低压降损失,从而增强系统的能效。

在一些实施例中,如图2-图3所示,子蓄热器12包括第一管13和第二管14,第二管14套设在第一管13外,第二管14与第一管13沿径向间隔开,这样第二管14与第一管13之间限定出蓄热腔,第一管13限定出换热腔17。

换言之,子蓄热器12为双层套管式,第一管13(内管)内用于流通换热介质(比如压缩空气),第二管14与第一管13之间用于存储蓄热介质16,第二管14与第一管13之间的蓄热腔为封闭式。蓄热腔和换热腔17通过第一管13隔离,第一管13可以为热的良导体制成,以便于换热。第二管14外包覆有保温层。这样,通过设计外圈的蓄热腔,蓄热腔(蓄热介质16)的填充厚度较薄,便于让蓄热介质16的各个区域均匀蓄热或放热。

第二管14与第一管13可以均为直管,比如第二管14与第一管13可以为同心的圆形直管,对应地,蓄热腔为环形腔。

在另一些实施例中,如图4所示,子蓄热器12包括第一管13、第二管14、第三管15,第三管15、第二管14、第一管13从外到内顺次套设,且第二管14与第一管13之间限定出蓄热腔,第三管15和第二管14之间以及第一管13分别限定出换热腔17。

换言之,第一管13限定出换热腔17,第二管14套设在第一管13外,第二管14与第一管13沿径向间隔开,这样第二管14与第一管13之间限定出蓄热腔,第三管15套设在第二管14外,第三管15与第二管14沿径向间隔开,这样第三管15与第二管14之间限定出换热腔17。蓄热腔与内侧的换热腔17通过第一管13隔离,蓄热腔与外侧的换热腔17通过第二管14隔离。

需要说明的是,在该实施例中,换热腔17包括两层,即蓄热腔的内外两侧均设计换热腔17,第一管13和第二管14可以为热的良导体制成,以便于换热,第三管15外包覆有保温层。蓄热腔的内外两侧的换热腔17可以同时工作,且两个换热腔17内的换热介质同向流动,这样,换热效率更高。

第三管15、第二管14与第一管13可以均为直管,比如第三管15、第二管14与第一管13可以为同心的圆形直管,对应地,蓄热腔为环形腔,外侧的换热腔17为环形腔。

当然,参考该实施例的设计思路,子蓄热器12还包括更多层,比如包括五层管,限定出两层蓄热腔和三层换热腔17,两层蓄热腔和三层换热腔17一一交错套设。

根据本发明实施例的存取共用型压缩空气储能蓄热系统,在储能时,高压高温空气流入子蓄热器12的换热腔17,并将热量传给蓄热腔处的蓄热介质16(以熔盐为例)。在释能时,从储气装置20出口的高压低温空气通过子蓄热器12的换热腔17,被蓄热腔处的蓄热介质16加热到高温,高温高压空气再到膨胀机,膨胀机做功。该蓄热装置10为直管布置,可以降低流动阻力。该系统可模块化设计,存、取运行环节共用一套蓄热装置10可降低投资成本,通过规划压缩机、膨胀机布置在蓄热装置10两侧,进一步降低空气流路压降。

在实际的执行中,多个同心套管式的子蓄热器12并联组成一列蓄热器11,多个蓄热器11并联组成了整个蓄热装置10,对每个子蓄热器12都进行外管保温处理。以熔盐作为储能介质为例,本方案主要分为储能和释能两个步骤。

储能时,经过压缩机压缩的高温高压空气,通过子蓄热器12的换热腔17加热位于环腔内的熔盐,熔盐吸热升温融化。当目标蓄热器11的熔盐全部达到设计储能温度时,关闭当前蓄热器11的分支控制阀18。开启其他蓄热器11的控制阀18,并以此类推。依次加个蓄热装置10中各个储热器,直到所有储热器分支均达到设计蓄热温度或储气装置20内空气压力达到设计压力值。

释能时,储气装置20出口的高压空气,通过子蓄热器12的换热腔17,蓄热腔的熔盐将热量传递给通过换热腔17内的空气,空气温度升高。再到膨胀机内膨胀做功。通过控制各蓄热器11的控制阀18的开闭,使高压空气依次通过各个蓄热器11被加热,直到提取完整个储热装置的蓄热或者储气装置20内空气高压空气释放完成为止。

本发明实施例提供了一种存取共用型压缩空气储能蓄热系统。该系统以内置蓄热夹层的同心套管为核心子蓄热器12。该子蓄热器12为圆直管。通过在子蓄热器12的夹层处填充合适的蓄热介质16来吸收和加热通过内外环腔的空气,起到储热和释热的作用。通过若干子蓄热器12并联组成蓄热器11,再通过若干蓄热器11并联成蓄热整个蓄热装置10。在每个蓄热器11前设置阀门,便于规划存、取热过程中的气体流路。

子蓄热器12通过环腔作为蓄热核心加热或冷却内管空气,同时具备蓄热和换热的功能。直管布置能很好的降低空气流路中存在的压降,提高系统效率。储能、释能环节共用一套设备,降低了整个系统的投资。运营过程中蓄热介质16无需流动,也降低了运营成本。模块化的设计和管理方式,有助于大规模生产、容量的扩展,也能降低系统投资和运营管理难度。

以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1