立式空调室内机的制作方法

文档序号:30838593发布日期:2022-07-22 23:45阅读:127来源:国知局
立式空调室内机的制作方法

1.本发明涉及空气调节技术领域,特别涉及一种立式空调室内机。


背景技术:

2.随着空调技术的发展,空调室内机的外形和功能不断更新换代,各种新技术层出不尽。
3.但是,关于空调室内机的导风结构的创新结构非常少。现有方案通常都是在出风口处设置导风板和摆叶组,通过导风板调节出风口的一个方向维度的角度,通过摆叶进行另一方向维度的摆风。现有空调室内机大量采用上述导风结构,在使用体验和产品外观上趋于一致,难以提升产品档次。
4.因此,如何在导风结构方面实现创新成为空调行业亟待解决的技术难题。


技术实现要素:

5.本发明的一个目的是要提供一种新型的导风筒及具有其的空调室内机,以提升产品的区分度和用户的使用体验。
6.本发明的另一目的是要解决出风气流的方向引导和微风效果不能兼顾的问题。
7.特别地,本发明提供了一种立式空调室内机,其包括:
8.机壳,其开设有沿其横向排列的两个出风口,以用于向室内环境送风;
9.两个风道,设置在所述机壳内,且沿所述机壳的横向排列,每个所述风道的出口连通一个所述出风口;和
10.两个导风筒,每个所述导风筒竖立于一个所述出风口处,每个所述导风筒的周壁包括沿其周向排列的导风段和通风段,以便允许所述出风口处的出风气流先经所述通风段的部分区域进入所述导风筒内部,接受所述导风段的内壁的引导,再经所述通风段的其余区域吹向室内环境,且所述导风筒配置成可绕竖直轴线转动地调节其出风方向。
11.可选地,每个所述导风筒的运行独立受控,以便独立地调节相应所述出风口的送风方向;且
12.两个所述出风口均朝斜前方敞开,且敞开方向在所述机壳横向方向上相互背离,以便使每个所述出风口的出风方向在一斜前送风方向和一斜后送风方向之间可调;在所述斜前送风方向,气流逐渐接近所述机壳横向中央正前方的斜前方流动;在所述斜后送风方向,气流横向远离所述机壳且逐渐朝后倾斜流动。
13.可选地,所述通风段为开设有多个散风孔的板状。
14.可选地,每个所述散风孔为长度方向平行于所述导风筒长度方向的长条孔,且各所述散风孔沿所述导风筒的周向依次间隔排列。
15.可选地,任一所述散风孔的宽度为m,该散风孔与任一相邻散风孔之间所间隔的实体部分的宽度为n;满足:1.9≤m/n≤2.1。
16.可选地,所述导风段的内壁为母线平行于所述导风筒长度方向的内凹弯曲面。
17.可选地,所述导风段的内壁为轴线平行于所述导风筒长度方向的内凹弧面。
18.可选地,所述导风筒为圆筒状,其转动轴线与圆筒的中心轴线重合。
19.可选地,所述导风段的外轮廓的圆心角的范围在110
°
至130
°
之间。
20.可选地,每个所述导风筒配置成:在调节出风方向时始终朝一个方向转动。
21.本发明的立式空调室内机中的导风筒为筒状,结构更加新颖独特。导风筒的周壁包括沿其周向排列的导风段和通风段。立式空调室内机运行时,出风气流先经通风段的部分区域进入导风筒内部,然后接受导风段的内壁的引导,再经通风段的其余区域吹向室内环境。在此过程中,出风气流两次经过通风段,经历两次打散,且在导风筒内部进行一次周转盘旋,进一步加强了其柔和性,使得气流噪音更低,风感更加柔软。使空调室内机营造出一种静谧舒适的送风环境,使人体感觉更加舒适。
22.并且,本发明的导风筒不仅将出风气流柔化处理,而且还特别利用导风段的内壁进行导风,利用导风段发挥传统的导风板的作用,使得出风气流的指向性更强。本发明的导风筒兼顾了出风气流的方向引导和微风效果,结构既简单又巧妙。
23.进一步地,本发明的立式空调室内机中,每个导风筒的运行独立受控且两个出风口均朝斜前方敞开,且敞开方向在机壳横向方向上相互背离,以便使每个出风口的出风方向在一斜前送风方向和一斜后送风方向之间可调。基于此,本发明通过独立调节两个出风口的送风角度,形成多种送风角度的组合,进而使立式空调室内机具有更加多样化的送风模式。
24.根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
25.后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
26.图1是本发明一个实施例的立式空调室内机结构示意图;
27.图2是图1所示空调室内机的c-c剖视放大图;
28.图3是图2中的导风筒的放大图;
29.图4是图2所示立式空调室内机在运行环抱送风模式时的示意图;
30.图5是图2所示立式空调室内机在运行聚合送风模式时的示意图;
31.图6是图2所示立式空调室内机在运行柔风送风模式时的示意图;
32.图7是图2所示立式空调室内机在仅开启一个出风口时的示意图;
33.图8是图2所示立式空调室内机在仅开启另一出风口时的示意图;
34.图9是图2所示立式空调室内机在两个出风口被关闭时的示意图。
具体实施方式
35.下面参照图1至图9来描述本发明实施例的立式空调室内机。其中,“前”、“后”、“上”、“下”、“顶”、“底”、“内”、“外”、“横向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的
装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
36.术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等特征可以明示或者隐含地包括至少一个该特征,也即包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
37.除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”“耦合”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。本领域的普通技术人员,应该可以根据具体情况理解上述术语在本发明中的具体含义。
38.本发明实施例提供了一种立式空调室内机。立式空调室内机为空调的室内部分,用于调节室内空气,例如制冷/制热、除湿、净化、引入新风等等。
39.图1是本发明一个实施例的立式空调室内机结构示意图;图2是图1所示空调室内机的c-c剖视放大图;图3是图2中的导风筒20的放大图。
40.如图1和图2所示,本发明实施例的立式空调室内机一般性地可包括机壳10、两个风道60和两个导风筒20。
41.机壳10开设有沿其横向排列的两个出风口12,以用于向室内环境送风。立式空调室内机主要朝向用户的正面为前面,由此定义出了机壳10的前后方向。与前后方向垂直的左右方向构成机壳10的横向,“前后”和“横向”已经在图2中标示出。机壳10限定有用于容纳立式空调室内机的主要部件的容纳空间,机壳10的内部形成用于调节室内环境的气流,例如冷风、热风、新风气流等等。
42.两个风道60设置在机壳10内,且沿机壳10的横向排列,每个风道60的出口连通一个出风口12。具体地,每个风道60可由间隔设置的第一风道壁61和第二风道壁62限定出。进一步地,第一风道壁61和第二风道壁62可为机壳10的一部分。
43.每个导风筒20竖立于一个出风口12处。每个导风筒20为筒状,其轴向平行于竖直方向。每个导风筒20的周壁包括沿其周向排列的导风段21和通风段22,以便允许出风口12处的出风气流先经通风段22的部分区域进入导风筒20内部,接受导风段21的内壁的引导,再经通风段22的其余区域吹向室内环境,且导风筒20配置成可绕竖直轴线x转动地调节其出风方向。
44.本发明实施例的立式空调室内机中,导风筒20为筒状,相比于传统的导风板,结构更加新颖独特。并且,导风筒20的周壁包括沿其周向排列的导风段21和通风段22。立式空调室内机运行时,出风气流先经通风段22的部分区域进入导风筒20内部,然后接受导风段21的内壁211的引导,再经通风段22的其余区域吹向室内环境,如图2。在此过程中,出风气流两次经过通风段22,经历两次打散,且在导风筒20内部进行一次周转盘旋,进一步加强了其柔和性,使得气流噪音更低,风感更加柔软。使立式空调室内机营造出一种静谧舒适的送风环境,使人体感觉更加舒适。
45.当然,导风筒20还可包括两个端壁(未图示),两个端壁与周壁共同限定出导风筒20的内部空腔。立式空调室内机可包括电机,电机的转轴连接于一个端壁,以用于驱动导风筒20绕x轴转动。电机可为步进电机。可使电机与立式空调室内机的控制器电连接,以便受控制器的控制。
46.在一些实施例中,每个导风筒20配置成:在调节出风方向时始终朝一个方向转动。也即,只需使导风筒20始终沿顺时针方向或逆时针方向转动,便能够将导风筒20转动至任一出风角度。这只需要配置能单向转动的电机即可,控制器也无需控制电机的正反转,简化了电机结构和控制逻辑。当然,在一些替代性实施例中,也可使导风筒20能受控地正反转。
47.现有技术存在一些在机壳或者导风板上开设微孔,以实现微孔送风效果的方案。但是,这些方案中,气流吹出后的方向得不到引导,使得出风的指向性不好。本发明实施例中的导风筒20不仅将出风气流柔化处理,而且还特别利用导风段21的内壁211进行导风,利用导风段21发挥传统的导风板的作用,使得出风气流的指向性更强。本发明的导风筒20兼顾了出风气流的方向引导和微风效果,结构既简单又巧妙。
48.在本发明的一些实施例中,如图3所示,可使通风段22为开设有多个散风孔222的板状。具体地,可使每个散风孔222为长度方向平行于导风筒20长度方向的长条孔,且各散风孔222沿导风筒20的周向依次间隔排列。相比于矩阵式排列的圆孔或方孔,这种长条孔的通风面积要更大,以避免通风面积过小导致出风不畅,从而影响立式空调室内机的制冷/制热效率。此外,可使每个散风孔222的长度方向的两端分别延伸至邻近导风筒20的长度方向的两端的位置,使其长度能够覆盖出风口12的整个长度方向。
49.在一些实施例中,如图3所示,可使任一散风孔222的宽度为m,该散风孔222与任一相邻散风孔222之间所间隔的实体部分的宽度为n;满足:1.9≤m/n≤2.1。优选地,使1.95≤m/n≤2.05,例如使m/n=2。如此可实现出风畅快性与柔和性的平衡。各个散风孔222的宽度m可相同,也可不同。各实体部分的宽度n可相同,也可不同。优选地,使各个散风孔222的宽度m相同,各实体部分的宽度n相同。
50.在一些实施例中,如图3所示,导风段21的内壁211为母线平行于导风筒20长度方向的内凹弯曲面。如此设置,可使内壁211能更好地引导风向,使得气流的转向更加平缓。例如,可使导风段21的内壁211为中心轴线平行于导风筒20长度方向的内凹弧面。进一步可使其中心轴线与导风筒20的转动轴线x重合。
51.在一些实施例中,如图2至图4所示,可使导风筒20为圆筒状,其转动轴线与圆筒的中心轴线重合。并且,导风段21的外轮廓的圆心角a的范围在110
°
至130
°
之间,例如使a=120
°

52.在另一些实施例中,导风筒20也可为多棱柱状,其转动轴线与多棱柱的中心轴线重合。当然,本实施例并非严格限定导风筒20为几何意义的多棱柱,其每个侧面并非必须平面,也可为内凹或外凸的曲面,只要整体大致为多棱柱即可落入本发明实施例的保护范围。可使导风筒20为正六棱柱状,其六个外侧面中的两个构成导风段21的外表面,且该两个外侧面对应的内侧面为一个整体的圆弧面,构成导风段21的内壁211。
53.在本发明的一些实施例中,每个导风筒20的运行独立受控,以便独立地调节相应出风口12的送风方向。并且,如图2所示,可使两个出风口12均朝斜前方敞开,且敞开方向在机壳10横向方向上相互背离。也即,使左侧的出风口12朝左前方敞开,使右侧的出风口12朝
右前方敞开。本实施例如此设计两个出风口12的敞开方向,以便使每个出风口12的出风方向在一斜前送风方向和一斜后送风方向之间可调。其中,在前述的斜前方送风方向,气流逐渐接近机壳10横向中央正前方的斜前方流动,例如对于左侧的出风口12,斜前送风指的向右前方送风,如图5。在前述的斜后送风方向,气流横向远离机壳10且逐渐朝后倾斜流动,如图6。因此,本发明实施例中每个出风口12的出风角度范围更大。
54.由于本发明实施例中两个出风口12的出风角度范围更大,可通过独立调节两个出风口12的送风角度,将形成多种送风角度的组合,进而使立式空调室内机具有更加多样化的送风模式。
55.图4是图2所示立式空调室内机在运行环抱送风模式时的示意图;图5是图2所示立式空调室内机在运行聚合送风模式时的示意图;图6是图2所示立式空调室内机在运行柔风送风模式时的示意图;图7是图2所示立式空调室内机在仅开启一个出风口12时的示意图;图8是图2所示立式空调室内机在仅开启另一出风口12时的示意图;图9是图2所示立式空调室内机在两个出风口12被关闭时的示意图。
56.例如图2所示,可使立式空调室内机运行前送风模式。具体地,使两个导风筒20均向正前方送风,两个出风口12的出风气流均朝前流动。
57.如图4所示,可使立式空调室内机运行环抱式送风模式。具体地,使两个导风筒20均朝斜前方出风且使出风方向相互远离,以使两股气流在机壳10的两侧向前流动。
58.如图5所示,可使立式空调室内机运行聚合送风模式。具体地,使两个导风筒20均向斜前方送风,使两个出风口12的出风气流逐渐接近,并在机壳10的前方进行汇聚,使得风力更强,送风距离更远。
59.如图6所示,可使立式空调室内机运行柔和送风模式。具体地,使两个导风筒20均朝横向远离机壳10的方向送风,以便使气流更加远离机壳10的前方,两股气流沿着墙壁向室内其他区域扩散,使室内环境以更加柔和的方式完成温度的下降/上升,使人感更加舒适。
60.图4至图6示意了两个出风口12均被打开的模式。此外,也可如图7或图8所示,仅开启一个出风口12,使另一出风口12被导风筒20封闭。
61.如图9所示,当立式空调室内机处于关机状态或其他不需要送风的状态时,可使导风筒20转动至使导风段21朝外的角度,以便利用导风段21封闭出风口12。以避免灰尘等杂质通过出风口12进入机壳10内部。
62.在一些实施例中,立式空调室内机设置有能感测人体位置的传感器,其与空调的控制器电连接,以便控制器根据人体与立式空调室内机的距离来自动选择送风模式。
63.具体地,当传感器检测到人员距离立式空调室内机较远时,控制器自动调整导风筒20的角度,使立式空调室内机运行聚合送风模式。
64.当传感器感知到人员由远及近的靠近立式空调室内机时,控制器自动调整导风筒20的角度,使立式空调室内机运行前送风模式。使气流平直送出,不再汇聚,风速降低,避免冷风吹人身上带来的不舒适感;
65.当传感器感知到人员处于立式空调室内机正前方时,控制器自动调整导风筒20的角度,使立式空调室内机运行环抱送风模式,此时气流从机壳两侧环绕出风,增加空间空气流动效率,增加人员舒适性。
66.当传感器感知到人员处于处于睡眠或者安静状态时,自动调整导风筒20的角度,进入柔和送风模式,气流先后两次通过导风筒20上的长条形狭缝孔进行送风,风速低、噪声低、风感柔软,缓缓从两侧进行送风,营造一个静谧舒适的环境。
67.当传感器感知到人员处于当传感器感知到人员处于立式空调室内机的左/右前方时,关闭右侧/左侧的出风口12,仅由左侧/右侧的导风筒20进行导风。
68.如图2所示,本发明实施例中,立式空调室内机可为利用蒸气压缩制冷循环系统进行制冷/制热的分体式房间空调器的室内部分。机壳10的内部还设有换热器30。换热器30、节流装置与设置于空调室外机内的压缩机、冷凝器以及其他的制冷元件通过管路相连接,构成一蒸气压缩制冷循环系统。在风机40的作用下,室内空气经机壳10的进风口(未图示,可设置在机壳的后壁或横向两侧壁)进入机壳10的内部,与换热器30完成强制对流换热后,形成热交换风,由风道60引导至出风口12处,然后吹向室内环境,完成对室内环境空气的调节。
69.在本实施例的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
70.至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1