从天然气中提氦并液化的系统与方法与流程

文档序号:15266592发布日期:2018-08-28 21:51阅读:738来源:国知局

本发明涉及化工尾气的回收利用,特别是涉及一种从天然气中提氦并液化的系统与方法。



背景技术:

氦气因其独特的性质,在国防军工和科学研究中有着重要的作用,利用其-268.9℃的低沸点,液氦可以用于低温超导及相关的低温制冷系统中,另外氦气在医疗领域的核磁共振成像设备中用作超导电磁体冷却,在核电装置用作传热介质,在光纤生产中用作冷却和惰性保护气,以及在真空检漏上用作检漏介质。

我国氦气消费量大,而且氦气产量低,基本都是从外国进口,氦气重要存在于天然气中,目前从天然气中提氦是氦气的主要来源。

目前工业上应用的氦气主要是从天然气中提取,天然气提氦技术显得非常重要,目前利用低温的办法从天然气中提氦是主要方式,但现有技术效率较低。



技术实现要素:

本发明要解决的技术问题是提供一种效率较高的从天然气中提氦并液化的系统与方法。

本发明的从天然气中提氦并液化的系统,包括:

用于对原料气第一次冷却降温处理的一级热交换器;

用于对第一次冷却降温处理后的原料气再次冷却降温的二级热交换器,与所述一级热交换器通过管路连接;

用于对再次冷却降温后的原料气降压处理的第一节流阀,与所述二级热交换器通过管路连接;

用于对降压处理后的原料气气液分离处理,使所述原料气分离出气相物料与液相物料的第一气液分离器,与所述第一节流阀通过管路连接;

第一气液分离器的液相物料出口与lng储罐通过管路连通;第一气液分离器的气相物料出口与bog压缩机的进气口连通;

用于对bog压缩机压缩后的气体进行冷却降温处理的三级热交换器,与bog压缩机的出气口连通;

用于对bog压缩机压缩后的气体进行再次冷却降温处理的四级热交换器;与所述三级热交换器通过管路连接;

用于对bog压缩机压缩后的气体进行三次冷却降温处理的五级热交换器;与所述四级热交换器通过管路连接;

用于对bog压缩机压缩后的气体洗涤,使所述气体中的氮气、氧气液化为混合液态物料后脱离出去,仅剩氦气的低温洗涤塔,与所述五级热交换器通过管路连接;

用于对所述混合液态物料低温精馏,使混合液态物料分离出氮气的脱氮塔,与所述低温洗涤塔通过管路连接。

本发明的从天然气中提氦并液化的系统,其中,脱氮塔的甲烷排放口与甲烷排出管连接,所述甲烷排出管经过五级热交换器,所述甲烷排出管与第一管路、第二管路连接,第一管路与lng储罐连通,第一管路上设置有第二节流阀,第二管路与低温洗涤塔连通,所述第二管路上设置有增压泵,脱氮塔的氮气排出口与氮气排出管连接,所述氮气排出管经过五级热交换器、四级热交换器,以使所述氮气排出管内的氮气复温,低温洗涤塔的氦气排出口与氦气排出管连接,所述氦气排出管经过五级热交换器、四级热交换器,以使所述氦气排出管内的氦气复温。

本发明的从天然气中提氦并液化的系统,其中,还包括:

用于对氦气排出管排出的氦气催化氧化处理,使所述氦气中的氢气、烷烃组分反应去除的催化氧化装置,与氦气排出管连通;

用于对催化氧化处理后的氦气纯化处理,使所述氦气中的水分、二氧化碳去除的常温纯化装置,与催化氧化装置连接。

本发明的从天然气中提氦并液化的系统,其中,还包括氦液化装置,所述氦液化装置包括用于对氦气压缩的氦气压缩机、用于储存液氮的液氮杜瓦罐,氦气压缩机与液氮杜瓦罐通过送氦管路连通,所述送氦管路依次经过用于对压缩后的氦气以及纯化处理后氦气预冷却的预冷器、用于对预冷却后的氦气第一次冷却降温处理第一热交换器、用于对第一次冷却降温处理后的氦气第二次冷却降温处理,使所述氦气液化的第二热交换器、用于对第二次冷却降温处理后的液氦节流降压的液氦节流阀,常温纯化装置与送氦管路连通,常温纯化装置与送氦管路的连接点位于氦气压缩机、预冷器之间,液氮杜瓦罐顶部的闪蒸气相出口通过氦气回流管与氦气压缩机的入口连接,以使液氮杜瓦罐闪蒸出氦气的被压缩,氦气回流管经过第二热交换器、第一热交换器、预冷器。

本发明的从天然气中提氦并液化的系统,其中,还包括氦气输送管,所述氦气输送管的一端与送氦管路连通,氦气输送管与送氦管路的连接点位于第一热交换器、预冷器之间,氦气输送管的另一端与氦气回流管连接,氦气输送管的另一端与氦气回流管的连接点位于第一热交换器、第二热交换器之间,氦气输送管依次经过第一膨胀机、第一热交换器、第二膨胀机、第二热交换器,以使氦气输送管内的氦气被第一膨胀机膨胀降温降压处理、被第一热交换器降温、被第二膨胀机膨胀降温降压处理后为第二热交换器提供冷量。

本发明的从天然气中提氦并液化的系统,其中,第一气液分离器的液相物料出口与lng储罐通过输送管路连通,输送管路上设置有第三节流阀。

本发明的从天然气中提氦并液化的系统,其中,还包括氮气制冷系统,所述氮气制冷系统包括氮气压缩机以及第四节流阀,氮气压缩机的出口通过第五管路与第四节流阀的进口连通,第四节流阀的出口通过第六管路与氮气压缩机的进口连通,以使被所述第四节流阀节流降温后的氮气回流至氮气压缩机,第五管路经过四级热交换器、脱氮塔塔底再沸器、五级热交换器,第六管路分别经过脱氮塔顶部的冷凝器、五级热交换器、四级热交换器,第五管路中的氮气在四级热交换器、脱氮塔塔底再沸器、五级热交换器中冷却降温,第六管路的氮气在脱氮塔顶部的冷凝器、五级热交换器、四级热交换器中提供冷量。

本发明的从天然气中提氦并液化的系统,其中,第七管路的一端连通第五管路,第七管路的另一端连通第六管路,第七管路与第五管路的连接点位于脱氮塔塔底再沸器、五级热交换器之间,第七管路与第六管路的连接点位于四级热交换器、五级热交换器之间,第七管路经过四级热交换器、第三膨胀机、五级热交换器。

本发明的从天然气中提氦并液化的系统,包括:

用于对原料气压缩的bog压缩机;

用于对压缩后的原料气第一次冷却降温处理的三级热交换器,与所述bog压缩机通过管路连接;

用于对bog压缩机压缩后的气体进行再次冷却降温处理的四级热交换器;与所述三级热交换器通过管路连接;

用于对bog压缩机压缩后的气体进行三次冷却降温处理的五级热交换器;与所述四级热交换器通过管路连接;

用于对bog压缩机压缩后的气体洗涤,使所述气体中的氮气、氧气液化为混合液态物料后脱离出去,仅剩氦气的低温洗涤塔,与所述五级热交换器通过管路连接;

用于对所述混合液态物料低温精馏,使混合液态物料分离出氮气的脱氮塔,与所述低温洗涤塔通过管路连接。

本发明的从天然气中提氦并液化的方法,包括:

对原料气第一次冷却降温处理;

对第一次冷却降温处理后的原料气再次冷却降温;

对再次冷却降温后的原料气降压处理;

对降压处理后的原料气气液分离处理,使所述原料气分离出气相物料与液相物料;

液相物料输送进lng储罐,对气相物料压缩后进行冷却降温处理;

对压缩后的气体进行再次冷却降温处理;

对压缩后的气体进行三次冷却降温处理;

对压缩后的气体洗涤,使所述气体中的氮气、氧气液化为混合液态物料后脱离出去,仅剩氦气;

对所述混合液态物料低温精馏,使混合液态物料分离出氮气。

本发明的技术方案结构简单、可以效率较高的从天然气中提氦并液化。

附图说明

图1为本发明的从天然气中提氦并液化的系统的实施例一的结构示意图;

图2为本发明的从天然气中提氦并液化的系统的实施例二的结构示意图;

图3为催化氧化装置的结构示意图;

图4为常温纯化装置的结构示意图。

具体实施方式

如图1所示,本发明的从天然气中提氦并液化的系统,包括:

用于对原料气第一次冷却降温处理的一级热交换器e1;

用于对第一次冷却降温处理后的原料气再次冷却降温的二级热交换器e2,与一级热交换器e1通过管路连接;

用于对再次冷却降温后的原料气降压处理的第一节流阀v1,与二级热交换器通过管路连接;

用于对降压处理后的原料气气液分离处理,使原料气分离出气相物料与液相物料的第一气液分离器101,与第一节流阀v1通过管路连接;

第一气液分离器的液相物料出口与lng储罐102通过管路连通;第一气液分离器101的气相物料出口与bog压缩机b6的进气口连通;

用于对bog压缩机压缩后的气体进行冷却降温处理的三级热交换器e3,与bog压缩机b6的出气口连通;

用于对bog压缩机压缩后的气体进行再次冷却降温处理的四级热交换器e4;与三级热交换器e3通过管路连接;

用于对bog压缩机压缩后的气体进行三次冷却降温处理的五级热交换器e5;与四级热交换器e4通过管路连接;

用于对bog压缩机压缩后的气体洗涤,使气体中的氮气、氧气液化为混合液态物料后脱离出去,仅剩氦气的低温洗涤塔t2,与五级热交换器通过管路连接;

用于对混合液态物料低温精馏,使混合液态物料分离出氮气的脱氮塔t3,与低温洗涤塔t2通过管路连接。

本发明的从天然气中提氦并液化的系统,其中,脱氮塔t3的甲烷排放口与甲烷排出管11连接,甲烷排出管11经过五级热交换器e5,甲烷排出管11与第一管路1、第二管路2连接,第一管路1与lng储罐102连通,第一管路1上设置有第二节流阀v2,第二管路2与低温洗涤塔t2连通,第二管路2上设置有增压泵p1。

本发明的从天然气中提氦并液化的系统,其中,脱氮塔t3的氮气排出口与氮气排出管连接,氮气排出管经过五级热交换器e5、四级热交换器e4,以使氮气排出管内的氮气复温。

本发明的从天然气中提氦并液化的系统,其中,低温洗涤塔t2的氦气排出口与氦气排出管10连接,氦气排出管10经过五级热交换器e5、四级热交换器e4,以使氦气排出管10内的氦气复温。

本发明的从天然气中提氦并液化的系统,其中,还包括:

用于对氦气排出管10排出的氦气催化氧化处理,使氦气中的氢气、烷烃组分反应去除的催化氧化装置b3,与氦气排出管10连通;

用于对催化氧化处理后的氦气纯化处理,使氦气中的水分、二氧化碳去除的常温纯化装置b4,与催化氧化装置b3连接。

本发明的从天然气中提氦并液化的系统,其中,还包括氦液化装置,氦液化装置包括用于对氦气压缩的氦气压缩机b5、用于储存液氮的液氮杜瓦罐104,氦气压缩机b5与液氮杜瓦罐104通过送氦管路80连通,送氦管路80依次经过用于对压缩后的氦气以及纯化处理后氦气预冷却的预冷器e8、用于对预冷却后的氦气第一次冷却降温处理第一热交换器e9、用于对第一次冷却降温处理后的氦气第二次冷却降温处理,使氦气液化的第二热交换器e10、用于对第二次冷却降温处理后的液氦节流降压的液氦节流阀60,常温纯化装置b4与送氦管路80连通,常温纯化装置与送氦管路80的连接点位于氦气压缩机、预冷器之间,液氮杜瓦罐104的顶部的闪蒸气相出口通过氦气回流管与氦气压缩机的入口连接,以使液氮杜瓦罐104闪蒸出氦气的被压缩,氦气回流管经过第二热交换器e10、第一热交换器e9、预冷器e8。

本发明的从天然气中提氦并液化的系统,其中,还包括氦气输送管21,氦气输送管的一端与送氦管路80连通,氦气输送管21与送氦管路80的连接点位于第一热交换器、预冷器之间,氦气输送管21的另一端与氦气回流管连接,氦气输送管的另一端与氦气回流管的连接点位于第一热交换器、第二热交换器之间,氦气输送管21依次经过第一膨胀机et1、第一热交换器e9、第二膨胀机et2、第二热交换器e10,以使氦气输送管内的氦气被第一膨胀机et1膨胀降温降压处理、被第一热交换器降温e9、被第二膨胀机et2膨胀降温降压处理后为第二热交换器e10提供冷量。

本发明的从天然气中提氦并液化的系统,其中,预冷器e8为液氮预冷器。

本发明的从天然气中提氦并液化的系统,其中,第一气液分离器101的气相物料出口与bog压缩机b6的进气口通过第三管路3连通,第三管路3经过二级热交换器e2、一级热交换器e1,以使第三管路3的气体在二级热交换器、一级热交换器内复温。

本发明的从天然气中提氦并液化的系统,其中,lng储罐102的气体出口与bog压缩机b6的进气口通过第四管路4连通,第四管路4经过三级热交换器e3,以使第四管路4的气体在三级热交换器e3内复温。

本发明的从天然气中提氦并液化的系统,其中,第一气液分离器的液相物料出口与lng储罐通过输送管路50连通,输送管路50上设置有第三节流阀v3。

本发明的从天然气中提氦并液化的系统,其中,还包括氮气制冷系统,氮气制冷系统包括氮气压缩机b2以及第四节流阀v4,氮气压缩机的出口通过第五管路5与第四节流阀v4的进口连通,第四节流阀的出口通过第六管路6与氮气压缩机b2的进口连通,以使被第四节流阀节流降温后的氮气回流至氮气压缩机,第五管路经过四级热交换器、脱氮塔塔底再沸器e7、五级热交换器,第六管路分别经过脱氮塔顶部的冷凝器e6、五级热交换器、四级热交换器,第五管路5中的氮气在四级热交换器、脱氮塔塔底再沸器、五级热交换器中冷却降温,第六管路的氮气在脱氮塔顶部的冷凝器e6、五级热交换器、四级热交换器中提供冷量。

本发明的从天然气中提氦并液化的系统,其中,第七管路7的一端连通第五管路,第七管路7的另一端连通第六管路,第七管路与第五管路的连接点位于脱氮塔塔底再沸器、五级热交换器之间,第七管路与第五管路的连接点,第七管路与第六管路的连接点位于四级热交换器、五级热交换器之间,第七管路经过四级热交换器、第三膨胀机et3、五级热交换器。

本发明的从天然气中提氦并液化的系统,其中,还包括混合冷剂循环制冷系统,混合冷剂循环制冷系统沿混合冷剂流动方向依次包括用于对混合冷剂压缩的混合冷剂压缩机e1以及第二气液分离器v103,第二气液分离器v103的液相混合冷剂出口通过第八管路8连通第五节流阀v5,第五节流阀v5通过冷剂回流管路22连接混合冷剂压缩机b1的入口,第二气液分离器v103的气相混合冷剂出口通过第九管路9与第六节流阀v6的进口连通,第六节流阀的出口通过第十管路与冷剂回流管路22连通,以使被第六节流阀节流降温后的气相混合冷剂回流至混合冷剂压缩机,第八管路8经过一级热交换器,第九管路9经过一级热交换器、二级热交换器,第十管路经过二级热交换器,冷剂回流管路22经过一级热交换器,第八管路中的液相混合冷剂在一级热交换器内冷却,第九管路9中的液相混合冷剂在一级热交换器、二级热交换器内冷却,第十管路中的液相混合冷剂在二级热交换器内提供冷量,冷剂回流管路22中的液相混合冷剂在一级热交换器内提供冷量。

本发明的从天然气中提氦并液化的系统,包括:

用于对原料气压缩的bog压缩机;

用于对压缩后的原料气第一次冷却降温处理的三级热交换器,与bog压缩机通过管路连接;

用于对bog压缩机压缩后的气体进行再次冷却降温处理的四级热交换器;与三级热交换器通过管路连接;

用于对bog压缩机压缩后的气体进行三次冷却降温处理的五级热交换器;与四级热交换器通过管路连接;

用于对bog压缩机压缩后的气体洗涤,使气体中的氮气、氧气液化为混合液态物料后脱离出去,仅剩氦气的低温洗涤塔,与五级热交换器通过管路连接;

用于对混合液态物料低温精馏,使混合液态物料分离出氮气的脱氮塔,与低温洗涤塔通过管路连接。

本发明的从天然气中提氦并液化的方法,包括:

对原料气第一次冷却降温处理;

对第一次冷却降温处理后的原料气再次冷却降温;

对再次冷却降温后的原料气降压处理;

对降压处理后的原料气气液分离处理,使原料气分离出气相物料与液相物料;

液相物料输送进lng储罐,对气相物料压缩后进行冷却降温处理;

对压缩后的气体进行再次冷却降温处理;

对压缩后的气体进行三次冷却降温处理;

对压缩后的气体洗涤,使气体中的氮气、氧气液化为混合液态物料后脱离出去,仅剩氦气;

对混合液态物料低温精馏,使混合液态物料分离出氮气。

本发明的技术方案结构简单、可以效率较高的从天然气中提氦并液化。本发明的技术方案涉及的方法包括:含氦气的天然气进入热交换器;经过冷凝降温、低温精馏制取氦气,并同时获得lng产品;氦气经过催化氧化及纯化装置提纯后,进入氦液化装置,将氦气液化,生产液氦。

本发明的技术方案工艺流程稳定、可以较高效率的从天然气中回收氦气、提高了产品的经济价值。

本发明的从天然气中提氦并液化的系统,其中,混合冷剂压缩机、氮气压缩机可以为往复式压缩机、离心式压缩机、螺杆压缩机等形式的压缩机。

本发明的从天然气中提氦并液化的系统,其中,混合冷剂组分为氮气、甲烷、乙烯、丙烷、异丁烷和异戊烷的任一组合组成。

本发明的从天然气中提氦并液化的系统,其中,低温洗涤塔、脱氮塔可以为筛板塔、填料塔、板式塔。

本发明的从天然气中提氦并液化的系统,其中,热交换器可以为板翅式热交换器和绕管式热交换器。

本发明的技术方案的优点是:工艺流程稳定,对氦气的回收率大于95%,得到粗氦气纯度99%以上,并且甲烷的回收率大于99%,产品收率大,纯度高,得到液氦纯度99.999%以上。

实施例一

本发明的从天然气中提氦并液化的系统的实施例一的结构如图1所示,利用上述实施例一进行从天然气中提氦并液化的流程如下:

来自于界区的经过净化处理的原料气进入本系统,经一级热交换器e1和二级热交换器e2降温后,经节流阀降压,进入第一气液分离器101中,分离出的气相经二级热交换器e2和一级热交换器e1复温后回bog压缩机b6,液相物料经节流阀降压后进入lng储罐102,气相经三级热交换器e3复温后去bog压缩机b6。

混合冷剂经混合冷剂压缩机b1增压后,经第二气液分离器103气液分离,液相进一级热交换器e1冷却降温后,经节流阀降压后,与返回的气相物料汇合,气相经一级热交换器e1和二级热交换器e2降温后,经节流阀降压后,返回二级热交换器e2,并与液相冷剂汇合,最后经一级热交换器e1复温后,回到混合冷剂压缩机b1入口,完成冷剂的循环过程。

分别来自第一气液分离器101和lng储罐102的气相物料,经bog压缩机b6增压后,与三级热交换器e3换热降温后,再进入四级热交换器e4、五级热交换器e5,降温后,进入低温洗涤塔t2底部,在低温洗涤塔中,液相甲烷组分从塔顶喷入,经过传热传质过程,从塔顶获得98.8%的氦气,氦气经五级热交换器e5、四级热交换器e4复温后去催化氧化装置,在低温洗涤塔塔底获得的液相物料进脱氮塔t3。

在脱氮塔t3塔顶获得富氮尾气,经五级热交换器e5、四级热交换器e4复温后出系统。在塔底获得lng产品,经五级热交换器e5降温后,分成两股,一股经节流阀降压后去lng储罐102,另外一股经增压泵p1增压后,进入低温洗涤塔的顶部。

氮气经过氮气压缩机b2增压后,进入热交换器、脱氮塔塔底再沸器e7后,分成两股,一股经五级热交换器e5降温后,经节流阀减压,进脱氮塔塔顶冷凝器e6,为塔顶提供冷量后,出五级热交换器e5;另外一股经四级热交换器e4,再进入第三膨胀机et3膨胀,降温降压后,返回五级热交换器e5,并与另外一股汇合后,经四级热交换器e4复温,再次回到压缩机入口,完成氮气的循环过程。

粗氦气进入催化氧化装置b3,在催化氧化装置中,将氦气中的氢气和烷烃组分反应掉,然后进入常温纯化装置b4,将水分和二氧化碳脱除,然后进入氦液化装置。

氦气经氦气压缩机b5增压后,与纯化后的氦气汇合,汇合后与预冷器e8预冷。预冷器内,液氮ln2经换热后成为气氮gn2出预冷器,氦气经预冷器e8冷却降温后,分为两股,一股经第一热交换器e9、第二热交换器e10降温后,经节流阀节流降压后,进入液氦杜瓦罐104,生产出液氦产品,闪蒸的气相氦气返回热交换器,经过热交换器复温后,回氦气压缩机b5;另外一股进入第一膨胀机et1降温降压后,经第一热交换器e9继续降温,再经过第二膨胀机et2膨胀降温降压,为第二热交换器e10提供冷量后,与闪蒸的氦气汇合,最后经过第一热交换器e9和预冷器e8复温后,回到氦气压缩机b5入口,完成氦气压缩循环。

实施例二

本发明的从天然气中提氦并液化的系统的实施例二的结构如图2所示,利用上述实施例二进行从天然气中提氦并液化的流程如下:

来自界区的bog,与热交换器e3换热后,经bog压缩机b6增压,增压后的bog与热交换器e3换热降温后,进入热交换器e4、e5,降温后,进入低温洗涤塔t2底部,在低温洗涤塔中,液相甲烷组分从塔顶喷入,经过传热传质过程,从塔顶获得98.8%的氦气,经热交换器e5、e4复温后去催化氧化装置,在塔底获得的液相物料进脱氮塔t3。在脱氮塔塔顶获得的富氮尾气,经热交换器e5、e4复温后出系统,在塔底获得的lng产品,经热交换器e5降温后,分成两股,一股经节流阀降压后出界区,另外一股经增压泵p1增压后,进入低温洗涤塔的顶部。

氮气经过氮气压缩机b2增压后,进入热交换器e4,脱氮塔塔底再沸器e7后,分成两股,一股经热交换器e5降温后,经节流阀减压,进脱氮塔塔顶冷凝器e6,为塔顶提供冷量后,出热交换器e5,另外一股经热交换器e4,再进入膨胀机et3膨胀,降温降压后,返回热交换器e5,并与另外一股汇合后,经热交换器e4复温,再次回到压缩机入口,完成氮气的循环过程。

粗氦气进入催化氧化装置b3,在催化氧化装置中,将氦气中的氢气和烷烃组分反应掉,然后进入常温纯化装置b4,将水分和二氧化碳脱除,然后进入氦液化装置。

氦气经氦气压缩机b5增压后,与纯化后的氦气汇合,汇合后与预冷器e8预冷。预冷器内,液氮ln2经换热后成为气氮gn2出预冷器,氦气经预冷器e8冷却降温后,分为两股,一股经第一热交换器e9、第二热交换器e10降温后,经节流阀节流降压后,进入液氦杜瓦罐,生产出液氦产品,闪蒸的气相氦气返回热交换器,经过热交换器复温后,回氦气压缩机b5;另外一股进入第一膨胀机et1降温降压后,经第一热交换器e9继续降温,再经过第二膨胀机et2膨胀降温降压,为第二热交换器e10提供冷量后,与闪蒸的氦气汇合,最后经过第一热交换器e9和预冷器e8复温后,回到氦气压缩机b5入口,完成氦气压缩循环。

结合图3、图4所示,催化氧化装置b3包括加热器e1’、与加热器e1’通过管路连接的反应器r1’以及水冷器e2’。水冷器e2’通过管路与反应器r1’的顶部连接。催化氧化装置b3还包括为反应器r1’提供氧气的氧气管线。

催化氧化装置的工作流程如下:原料气(氦气)进入本装置,先经过加热器加热升温后,进入反应器,氧气管线为反应器提供氧气,经过反应后,将原料气中的烃类氧化成二氧化碳和水,经过水冷器e2水冷后输出下一工序。

常温纯化装置b4包括第一干燥纯化塔v2’和第二干燥纯化塔v3’,塔内装填有3a和4a分子筛,第一干燥纯化塔v2’和第二干燥纯化塔v3’的顶部均连接氦气进入管道,第一干燥纯化塔v2’的底部和第二干燥纯化塔v3’的底部分别连接第一干燥氦气输出管、第二干燥氦气输出管,第一干燥氦气输出管上设置有第一控制阀v30’,第二干燥氦气输出管上设置有第二控制阀v40’。

第一干燥纯化塔v2’的底部和第二干燥纯化塔v3’的底部分别连接第一再生管、第二再生管,第一再生管上设置有第三控制阀v60’,第二再生管上设置有第四控制阀v50’。第一再生管、第二再生管均与再生真空泵p1’连接。

常温纯化装置b4工作时,两塔切换使用,一塔处于吸附状态,另外一塔处于再生状态,再生时通过再生真空泵p1’将分子筛吸附的杂质解析出来。

以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1