一种利用液化天然气冷能脱烃脱碳的系统和方法与流程

文档序号:20780986发布日期:2020-05-19 21:14阅读:395来源:国知局
一种利用液化天然气冷能脱烃脱碳的系统和方法与流程

本发明属于液化天然气冷能利用领域,涉及一种利用液化天然气冷能脱烃脱碳的系统。



背景技术:

近年来,中国天然气的进口和开采均保持快速发展,可利用lng的冷能处理开采的天然气;2018年中国lng进口5378万吨,同比上涨41.2%,液化天然气的进口和消费都保持快速增长;同时中国在加大油气勘探开采力度,2019年12月份中国发布《关于推进矿产资源管理改革若干的意见(试行)》,探索开放油气勘察开采市场,中国天然气的开采开发也将快速发展;随着2019年国家石油天然气管网集团有限公司的成立,天然气开采、进口、发展应用将进入新的阶段,本发明涉及一种利用液化天然气冷能脱烃、脱二氧化碳(简称脱烃脱碳)的方法,可利用液化天然气的冷能处理开采的天然气、油田伴生气或者其它需脱烃脱碳的应用项目,降低处理厂能耗,提高经济效益。

液化天然气冷能可以用于空气分离、制冰、轻烃精馏、二氧化碳捕集和低温冷库等领域,节约生产过程的能耗。目前广东、福建、浙江、江苏等lng接收站都有用海水气化lng补充到高压输配管网的需求,液化天然气冷能并没有充分利用,同时沿海分布有油气田开采项目;本系统过利用液化天然气气化过程释放的冷能处理开采的天然气或者油田伴生气,提高lng冷能利用效率。



技术实现要素:

本发明在新的应用领域利用液化天然气冷能,提供一种利用液化天然气冷能脱烃脱碳的方法,回收lng高品位冷能;该方法包含原料气过滤压缩、原料气净化、轻烃分馏、乙烷二氧化碳冷凝、lng升压换热、乙烷二氧化碳精馏等过程;本方法的原料气先经过滤器过滤后,经压缩机升压,然后原料气经分子筛净化后进入膨胀机压缩端进一步升压至精馏塔工作压力,与处理后的低温天然气换热冷凝出c5以上重组分,然后原料气进一步换热降温液化c4组分,进入精馏塔下塔(09),在下塔中部和底部分别分馏出c3、c4;原料气进入上塔底部冷凝复热器降温,液化乙烷、二氧化碳,部分混合液回流下塔保持下塔的精馏工况,其它混合气进入上塔与高压lng进行热质交换冷凝乙烷和固态二氧化碳,形成乙烷干冰混悬液,乙烷干冰混悬液在上塔底部冷凝复热器吸热升温液化,然后进入乙烷二氧化碳精馏塔分离,从底部分馏出液态乙烷,顶部获得二氧化碳气体经上塔底部冷凝复热器降温液化,形成液态二氧化碳输出。在此方法中,当原料气压力高于出站目标压力要求时,则不需要压缩机(03);当原料气压力能够满足精馏塔处理压力要求时,则不需要膨胀机(12)压缩机(05)。

本发明还提供一种利用液化天然气冷能脱烃脱碳的系统,利用lng冷能提供脱烃脱碳过程中各组分液化所需冷能。本发明的目的通过下述方案实现:附图表述一种利用液化天然气冷能脱烃脱碳的系统,其特征在于:包含过滤压缩单元、原料气净化单元、轻烃冷凝分馏单元、lng升压换热单元、乙烷二氧化碳精馏单元。

1)过滤压缩单元:

所述原料气过滤压缩单元包含过滤器(01)、原料气压缩机(02)、换热器(03)及所流经管道;

原料气(101)在过滤器(01)中清除所含的颗粒物杂质,经过原料气压缩机(02)升压;经过换热器(03)与处理后的气体换热降温,排出冷却过程产生的冷凝水(201);进入原料气净化单元。

2)原料气净化单元:

所述原料气净化单元包含分子筛(04)、纯净原料气(102);

原料气经过滤压缩处理后进入分子筛(04)系统中脱除原料气中的水,变成干燥纯净原料气(102);为了连续不间断使用,所述分子筛(04)分为两台,交替使用,一台纯化一台再生。

3)轻烃冷凝分馏单元:

所述冷凝分馏单元包含压缩机(05)、膨胀机(12)、换热器(06)、气液分离器(07)、主换热器(08)、精馏塔下塔(09)、精馏塔上塔(10)、冷凝复热器(11)、换热器(15)、冷凝复热器(16)及所流经管道;

纯净原料气进入压缩机(05)压缩至精馏塔所需工作压力,进入换热器(06)与来自膨胀机(12)膨胀后的低温成品气(106)换热,将原料气中c5以上的烃组分冷凝液化,经气液分离器(07)分离,底部c5+液相(113)成品输出;气液分离器顶部低温原料气(103)流入主换热器(08)与上塔顶部流出的低温高压成品气(105)换热,将原料气中c4组分液化形成气液混合气(104),进入精馏塔下塔(09)精馏;

在精馏塔下塔(09)的底部得到丁烷丁烯等c4液相(112),在精馏塔下塔(09)的中部得到粗丙烷(111),精馏塔下塔(09)塔顶的混合气进入换热器(15)换热降温,然后进入精馏塔上塔(10)底部冷凝复热器(11),吸收上塔底部液态乙烷和干冰混悬液的热量,混合气中的乙烷和二氧化碳液化形成气液混合物,气液混合物一部分送回精馏塔下塔(09)以维持下塔的精馏工况,剩余气液混合物从精馏塔上塔(10)的中部进入,与从精馏塔上塔(10)上部输入的高压液化天然气(109)进行热质交换,将气液混合物中的乙烷进一步液化、二氧化碳冷凝成干冰,形成液态乙烷和干冰混悬液掉落精馏塔上塔(10)底部,在上塔底部与冷凝复热器(11)、冷凝复热器(16)换热吸收下塔混合气及二氧化碳气相(115)的热量,混悬液中干冰液化后,形成乙烷二氧化碳混合液(110)输出;

在精馏塔上塔(10)的顶部得到低温高压成品气(105),流经主换热器(08)换热升温、膨胀机(12)降至出站目标压力,形成低温成品气(106),经过换热器(06)进一步复热后成品气(107)输出。

4)lng升压换热单元:

液化天然气(108)经低温lng泵(13)升压至高于精馏塔上塔(10)的工作压力,形成高压液化天然气(109)进入上塔上部进行热交换,冷凝乙烷二氧化碳;在处理气井气、油田伴生气等液化天然气可以直接掺混的应用场合,液化天然气在精馏塔上塔(10)直接与原料气进行热质交换处理;在液化天然气不能直接掺混的应用场合,则设置塔顶冷凝器,同时控制上塔工作温度避免干冰堵塞塔顶冷凝器。

5)乙烷二氧化碳精馏单元:

乙烷二氧化碳精馏单元包含精馏塔(14)、换热器(15)、冷凝复热器(16)及所流经管道;

上塔底部输出的乙烷二氧化碳混合液(110)流经换热器(15),吸收精馏塔下塔(09)塔顶的混合气和精馏塔(14)塔顶二氧化碳气相(115)的热量,形成气液混合物进入精馏塔(14)精馏分离二氧化碳、乙烷,在精馏塔(14)塔底输出液态乙烷(114),在精馏塔(14)塔底输出二氧化碳气相(115),二氧化碳气相(115)经换热器(15)初步冷却,然后进入精馏塔上塔(10)底部的冷凝复热器(16),吸收上塔底部液态乙烷和干冰混悬液的热量液化,输出液态二氧化碳(116),完成精馏分离。

本发明上述技术方案可以看出,本发明液化天然气冷量处理原料天然气,是一种新的天然气处理方法,降低了天然气处理能耗,同时提供一种低温固碳的方法。

附图说明

附图是本发明的工作原理图:

过滤器—01、原料气压缩机—02、换热器—03、分子筛—04、压缩机—05、膨胀机—12、换热器—06、气液分离器—07、主换热器—08、精馏塔下塔—09、精馏塔上塔—10、冷凝复热器—11、膨胀机—12、低温lng泵—13、精馏塔—14、换热器—15、冷凝复热器—16;

原料气—101、纯净原料气—102、低温原料气—103、气液混合气—104、低温高压成品气—105、低温成品气—106、成品气—107、液化天然气—108、高压液化天然气—109、乙烷二氧化碳混合液—110、粗丙烷—111、c4液相—112、c5+液相—113、液态乙烷—114、二氧化碳气相—115、液态二氧化碳—116、冷凝水—201。

具体实施方式:

下面结合两个处理量100万标方/日的天然气处理厂,在不同出站参数要求下的实施例,结合附图对本发明作进一步详细的描述,但本发明的实施方式不限于此,本发明适用于利用冷能脱烃脱碳、低温固碳的应用场合。对于未特别注明的工艺参数,可参照常规技术进行。

实施例1:处理量100万标方/日的天然气处理厂参数:

原料气摩尔组成:甲烷80%,氮气1%,二氧化碳6%,乙烷7%,c3:4%,c4+:2%;

原料气压力:7.0mpa;

液化天然气摩尔组成:甲烷99.5%,氮气0.2%,乙烷0.3%;

液化天然气压力:0.3mpa;

成品气要求:甲烷>90%vol,二氧化碳<3%vol,热值>31.4mj/nm3,压力:4.0mpa;

附图表述一种利用液化天然气冷能脱烃脱碳的系统,其特征在于:包含过滤压缩单元、原料气净化单元、轻烃冷凝分馏单元、lng升压换热单元、乙烷二氧化碳精馏单元。

1.本实例原料气压力7.0mpa,成品气压力要求4.0mpa,具有3.0mpa的工作压差,因此不需要系统中的原料压缩机(02);

2.利用压缩机(05)将原料气升压至8.5mpa,提高上塔工作压力有利于提高冷凝效率;处理后经膨胀机(12)将成品气压力降至4.0mpa;

3.为避免甲烷进入超临界状态,精馏塔上塔(10)冷凝工作最低温度需高于甲烷临界温度(82.6℃),上塔处理温度按195k(-78℃)设计,处理后乙烷分压0.17mpa,摩尔分数2.0%,二氧化碳分压0.10mpa,摩尔分数1.2%;c3以上组分在此温度下分压均小于0.1%,脱除干净;

4.液化天然气主要用于处理产品液化过程潜热耗冷、系统保温耗冷,原料气与lng比例约10:1;即lng消耗约70吨/日(气化后10万方天然气);

5.原料气流量100万标方/日,11.6标方/秒;处理后成品气94万标方/日,10.9标方/秒;

6.成品气组成:甲烷90万标方/日,含量95.9%vol;氮气1万标方/日,含量1.1%vol;乙烷1.8万标方/日,含量1.9%vol;二氧化碳1.1万标方/日,含量1.2%vol。

处理过程

1)过滤:原料气(101)流量11.6标方/秒,7.0mpa在过滤器(01)中清除所含的颗粒物杂质,经过换热器(03)与处理后的气体换热降温,排出冷却过程产生的冷凝水(201);进入原料气净化单元。

2)净化:原料气经过滤压缩处理后进入分子筛(04)系统中脱除原料气中的水,变成干燥纯净原料气(102);为了连续不间断使用,所述分子筛(04)分为两台,交替使用,一台纯化一台再生。

3)轻烃冷凝分馏:纯净原料气流量11.6标方/秒进入压缩机(05)压缩至8.5mpa,进入换热器(06)与来自膨胀机(11)膨胀后的低温成品气(106)换热,流量10.9标方/秒,将原料气中c5以上的烃组分冷凝液化,经气液分离器(07)分离,底部c5+液相(113)成品输出;气液分离器顶部低温原料气(103)流入主换热器(08)与上塔顶部流出的低温高压成品气(105)换热,将原料气中c4组分液化形成气液混合气(104),进入精馏塔下塔(09)精馏;

在精馏塔下塔(09)的底部得到丁烷丁烯等c4液相(112),在精馏塔下塔(09)的中部得到粗丙烷(111),精馏塔下塔(09)塔顶的混合气进入换热器(15)换热降温,然后进入精馏塔上塔(10)底部冷凝复热器(11),吸收上塔底部液态乙烷和干冰混悬液的热量,混合气中的乙烷和二氧化碳液化形成气液混合物,气液混合物一部分送回精馏塔下塔(09)以维持下塔的精馏工况,剩余气液混合物从精馏塔上塔(10)的中部进入,与从精馏塔上塔(10)上部输入的高压液化天然气(109)进行热质交换,将气液混合物中的乙烷进一步液化、二氧化碳冷凝成干冰,形成液态乙烷和干冰混悬液掉落精馏塔上塔(10)底部,在上塔底部与冷凝复热器(11)、冷凝复热器(16)换热吸收下塔混合气及二氧化碳气相(115)的热量,混悬液中干冰液化后,形成乙烷二氧化碳混合液(110)输出;

在精馏塔上塔(10)的顶部得到低温高压成品气(105),流经主换热器(08)换热升温、膨胀机(12)降至出站目标压力,形成低温成品气(106),经过换热器(06)进一步复热后成品气(107)输出,流量10.9标方/秒。

4)lng升压换热:液化天然气(108)经低温lng泵(13)从0.3mpa升压至9.0mpa,形成高压液化天然气(109)进入上塔上部进行热交换,冷凝分馏乙烷二氧化碳。本项目液化天然气可以直接掺混进来料气,液化天然气在精馏塔上塔(10)直接与原料气进行热质交换处理。

5)乙烷二氧化碳精馏:上塔底部输出的乙烷二氧化碳混合液(110)流经换热器(15),吸收精馏塔下塔(09)塔顶的混合气和精馏塔(14)塔顶二氧化碳气相(115)的热量,形成气液混合物进入精馏塔(14)精馏分离二氧化碳、乙烷,在精馏塔(14)塔底输出液态乙烷(114),在精馏塔(14)塔底输出二氧化碳气相(115),二氧化碳气相(115)经换热器(15)初步冷却,然后进入精馏塔上塔(10)底部的冷凝复热器(16),吸收上塔底部液态乙烷和干冰混悬液的热量液化,输出液态二氧化碳(116),完成乙烷、二氧化碳的精馏分离。

实施例2:处理量100万标方/日的天然气处理厂参数:

原料气摩尔组成:甲烷80%,氮气1%,二氧化碳6%,乙烷7%,c3:4%,c4+:2%;

原料气压力:1.0mpa;

液化天然气摩尔组成:甲烷99.5%,氮气0.2%,乙烷0.3%;

液化天然气压力:0.3mpa;

成品气要求:甲烷>90%vol,二氧化碳<3%vol,热值>31.4mj/nm3,压力:1.6mpa;

附图表述一种利用液化天然气冷能脱烃脱碳的系统,其特征在于:包含过滤压缩单元、原料气净化单元、轻烃冷凝分馏单元、lng升压换热单元、乙烷二氧化碳精馏单元。

1.本实例原料气压力1.0mpa,成品气压力要求1.6mpa,需要系统中的原料压缩机(02)进行升压至1.8mpa;

2.为减少压缩压缩机(02)能耗,本实例取消压缩机(05)、膨胀机(12);

3.精馏塔上塔(10)工作压力低于在甲烷临界压力,液化天然气的温度在-130~-150℃之间,精馏塔上塔(10)冷凝工作温度按-108℃设计,处理后乙烷分压0.03mpa,摩尔分数1.67%,二氧化碳分压0.0057mpa,摩尔分数0.32%;c3以上组分在此温度下分压均小于0.1%,脱除干净;

4.液化天然气主要用于处理产品液化过程潜热耗冷、系统保温耗冷,原料气与lng比例约10:1;即lng消耗约70吨/日(气化后10万方天然气);

5.原料气流量100万标方/日,11.6标方/秒;处理后成品气92.8万标方/日,10.7标方/秒;

6.成品气组成:甲烷90万标方/日,含量97.0%vol;氮气1万标方/日,含量1.1%vol;乙烷1.5万标方/日,含量1.6%vol;二氧化碳0.28万标方/日,含量0.3%vol。

处理过程

1)过滤压缩:原料气(101)流量11.6标方/秒、1.0mpa在过滤器(01)中清除所含的颗粒物杂质,经过原料气压缩机(02)升压至1.8mpa,经过换热器(03)与处理后的气体换热降温,排出冷却过程产生的冷凝水(201);进入原料气净化单元。

2)净化:原料气经过滤压缩处理后进入分子筛(04)系统中脱除原料气中的水,变成干燥纯净原料气(102);为了连续不间断使用,所述分子筛(04)分为两台,交替使用,一台纯化一台再生。

3)轻烃冷凝分馏:纯净原料气流量11.6标方/秒进入换热器(06)与来自膨胀机(11)膨胀后的低温成品气(106)流量10.7标方/秒换热,将原料气中c5以上的烃组分冷凝液化,经气液分离器(07)分离,底部c5+液相(113)成品输出;气液分离器顶部低温原料气(103)流入主换热器(08)与上塔顶部流出的低温高压成品气(105)换热,将原料气中c4组分液化形成气液混合气(104),进入精馏塔下塔(09)精馏;

在精馏塔下塔(09)的底部得到丁烷丁烯等c4液相(112),在精馏塔下塔(09)的中部得到粗丙烷(111),精馏塔下塔(09)塔顶的混合气进入换热器(15)换热降温,然后进入精馏塔上塔(10)底部冷凝复热器(11),吸收上塔底部液态乙烷和干冰混悬液的热量,混合气中的乙烷和二氧化碳液化形成气液混合物,气液混合物一部分送回精馏塔下塔(33)以维持下塔的精馏工况,剩余气液混合物从精馏塔上塔(10)的中部进入,与从精馏塔上塔(10)上部输入的高压液化天然气(109)进行热质交换,将气液混合物中的乙烷进一步液化、二氧化碳冷凝成干冰,形成液态乙烷和干冰混悬液掉落精馏塔上塔(10)底部,在上塔底部与冷凝复热器(11)、冷凝复热器(16)换热吸收下塔混合气及二氧化碳气相(115)的热量,混悬液中干冰液化后,形成乙烷二氧化碳混合液(110)输出;

在精馏塔上塔(10)的顶部得到低温高压成品气(105),流经主换热器(08)换热升温、膨胀机(12)降至出站目标压力,形成低温成品气(106),经过换热器(06)进一步复热后成品气(107)输出,流量10.7标方/秒。

4)lng升压换热单元

液化天然气(108)经低温lng泵(13)从0.3mpa升压至2.0mpa,形成高压液化天然气(109)进入上塔上部进行热交换,冷凝分馏乙烷二氧化碳。本项目液化天然气可以直接掺混进来料气,液化天然气在精馏塔上塔(10)直接与原料气进行热质交换处理。

5)乙烷二氧化碳精馏:上塔底部输出的乙烷二氧化碳混合液(110)流经换热器(15),吸收精馏塔下塔(09)塔顶的混合气和精馏塔(14)塔顶二氧化碳气相(115)的热量,形成气液混合物进入精馏塔(14)精馏分离二氧化碳、乙烷,在精馏塔(14)塔底输出液态乙烷(114),在精馏塔(14)塔底输出二氧化碳气相(115),二氧化碳气相(115)经换热器(15)初步冷却,然后进入精馏塔上塔(10)底部的冷凝复热器(16),吸收上塔底部液态乙烷和干冰混悬液的热量液化,输出液态二氧化碳(116),完成乙烷、二氧化碳的精馏分离。

尽管上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式,这些均属于本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1