一种利用回热器热量防止蒸发器结霜的空气源CO2热泵系统

文档序号:25353801发布日期:2021-06-08 14:15阅读:388来源:国知局
一种利用回热器热量防止蒸发器结霜的空气源CO2热泵系统
一种利用回热器热量防止蒸发器结霜的空气源co2热泵系统
技术领域
1.本发明涉及热泵技术领域,具体涉及一种利用回热器热量防止蒸发器结霜的空气源 co2热泵系统。


背景技术:

2.为提高北方地区取暖清洁化水平,减少大气污染物排放,国家发展改革委、能源局等 10部门制定了《北方地区冬季清洁取暖规划(2017

2021年)》,规划指出到2021年,电供暖面积到15亿平方米,其中热泵供暖5亿平方米。2018年3月热泵技术入选发展改革委最新发布的《国家重点节能低碳技术推广目录》,被视为重点推广的节能技术。传统氟利昂工质,都有较高的全球气候变暖潜能(gwp),造成强烈的温室效应,采用以co2为代表的自然工质是应对越来越严重的气候问题的必然趋势。
3.co2热泵与传统氟利昂热泵相比,属于类显热放热。回水温度的变化对系统性能的影响较大。在实际工程中利用热泵进行采暖往往使系统选型与热负荷的需求之间存在“大马拉小车”的问题。对于定频热泵机组会出现频繁起停,能耗增加,启停噪音较大且系统易损坏;对于变频热泵机组会长时间工作在部分负荷下,负荷变化使系统回水温度逐渐升高,性能衰减严重,整体耗电较大,节能效果差。
4.另外,空气源热泵在低温高湿工况下的结霜问题制约着它的高效运行。因为风冷蒸发器表面霜层的不断累积,吸排气压力、制热量不断减小,耗电量则不断增加,从而导致系统性能下降,制热能力差,甚至使机组出现运行故障。
5.因此,变负荷下系统性能差和结霜问题,是空气源co2热泵实现稳定高效运行亟待解决的问题。


技术实现要素:

6.本发明目的是提出一种利用回热器热量防止蒸发器结霜的空气源co2热泵系统,通过一个蓄热型换热罐,进一步增大系统回热温降,同时将回热温降的热量用于蓄热除霜和过热温升,以解决系统结霜和变负荷性能波动带来的性能下降问题。
7.本发明提出的利用回热器热量防止蒸发器结霜的空气源co2热泵系统,包括空气源热泵系统、蓄热型换热罐和冷却泵;所述的空气源热泵系统由压缩机、气体冷却器、膨胀阀、风冷蒸发器、干燥过滤器和气液分离器组成,所述的蓄热型换热罐的罐体内充满相变蓄热材料,蓄热型换热罐的罐体内设有套管式回热管和单螺旋翅片管冷却液换热管,套管式回热管和单螺旋翅片管冷却液换热管相互间隔成螺旋形安装,套管式回热管内设有内管;
8.所述的气体冷却器的进口与蓄热型换热罐中套管式回热管的高压流体进口相连,蓄热型换热罐中套管式回热管的低压流体出口通过气液分离器和压缩机与气体冷却器的出口相连;
9.所述的蓄热型换热罐中单螺旋翅片管冷却液换热管的冷却液进口、风冷蒸发器的高温冷却液通道和单螺旋翅片管冷却液换热管的冷却液出口构成冷却液循环回路,所述的
冷却泵设置在该回路的靠近冷却液出口处;
10.所述的蓄热型换热罐中套管式回热管的高压流体出口、风冷蒸发器的制冷剂通道和套管式回热管的低压流体进口构成低压回热循环回路,所述的干燥过滤器和膨胀阀依次置于该回路的靠近高压流体出口处。
11.本发明提出的利用回热器热量防止蒸发器结霜的空气源co2热泵系统,其优点是:
12.本发明的利用回热器热量防止蒸发器结霜的空气源co2热泵系统,通过一个蓄热型换热罐,一方面进一步增大系统回热温降,降低节流损失,提高系统性能,另一方面,将回热温降的热量用于蓄热除霜和过热温升,避免将热量都用于过热温升导致过热度偏大,系统性能衰减,同时为蒸发器防止结霜提供热量。本发明的空气源co2热泵系统,将蓄热型换热罐和空气源二氧化碳热泵相结合,有效提升了变负荷工况下空气源二氧化碳热泵的性能和解决了蒸发器表面结霜的问题,实现了机组的稳定高效供热。而且本发明的蓄热型换热罐结构简单、紧凑,经济性好,利于推广应用。
附图说明
13.图1是本发明提出的利用回热器热量防止蒸发器结霜的空气源co2热泵系统的示意图。
14.图2是图1所示的空气源co2热泵系统中蓄热型换热罐的结构示意图。
15.图3是图2的蓄热型换热罐中套管式回热管的剖视简图。
16.图4是本发明一个实施例的结构示意图。
17.图5是本发明实施例中结霜量随时间的变化趋势示意图。
18.图1

图3中,1是压缩机,2是气体冷却器,3是蓄热型换热罐,4是干燥过滤器,5 是膨胀阀,6是风冷蒸发器,7是气液分离器,8是冷却泵,9是换热管外翅片,10是套管式回热管,11是高压流体进口,12是低压流体出口,13是冷却液进口,14是低压流体进口,15是冷却液出口,16是封头,17是高压流体出口,18是单螺旋翅片管冷却液换热管, 19是筒体,20是低温低压制冷剂,21是超临界流体,22是高温冷却液通道,23是高温冷却液进口,24是高温冷却液出口,25是制冷剂通道,26是制冷剂进口,27是制冷剂出口, 28是风冷蒸发器翅片。
具体实施方式
19.本发明提出的利用回热器热量防止蒸发器结霜的空气源co2热泵系统,其结构如图1 所示,其特征在于包括空气源热泵系统、蓄热型换热罐3和冷却泵8;所述的空气源热泵系统由压缩机1、气体冷却器2、膨胀阀5、风冷蒸发器6、干燥过滤器4和气液分离器7 组成,所述的蓄热型换热罐3的结构如图2所示,所述的蓄热型换热罐3的罐体19内充满相变蓄热材料,蓄热型换热罐3的罐体19内设有套管式回热管10和单螺旋翅片管冷却液换热管18,套管式回热管10和单螺旋翅片管冷却液换热管18相互间隔成螺旋形安装,套管式回热管10的结构如图3所示,套管式回热管10内设有内管;
20.所述的气体冷却器2的进口与蓄热型换热罐3中套管式回热管10的高压流体进口11 相连,蓄热型换热罐3中套管式回热管10的低压流体出口12通过气液分离器7和压缩机 1与气体冷却器2的出口相连;
21.所述的蓄热型换热罐3中单螺旋翅片管冷却液换热管18的冷却液进口13、风冷蒸
发器6的高温冷却液通道22和单螺旋翅片管冷却液换热管18的冷却液出口15构成冷却液循环回路,所述的冷却泵8设置在该回路的靠近冷却液出口15处;
22.所述的蓄热型换热罐3中套管式回热管10的高压流体出口17、风冷蒸发器6的制冷剂通道25和套管式回热管10的低压流体进口14构成低压回热循环回路,所述的干燥过滤器4和膨胀阀5依次置于该回路的靠近高压流体出口17处。
23.以下结合附图,详细介绍本发明利用回热器热量防止蒸发器结霜的空气源co2热泵系统的工作原理和工作过程:
24.本发明空气源co2热泵系统,主要由蓄热型换热罐、冷却液循环系统、空气源热泵系统组成。其中空气源热泵系统主要由压缩机1、气体冷却器2、膨胀阀5、风冷蒸发器6、干燥过滤器4、气液分离器7及连接管件等组成;蓄热型换热罐3主要由套管式回热器10、单螺旋翅片管冷却液换热器18、筒体19、封头16、换热管外翅片9等组成。冷却液循环系统是通过冷却泵8驱动冷却液在风冷蒸发器6和蓄热型换热罐3内的单螺旋翅片管冷却液换热器18形成循环回路。空气源co2热泵系统在制热模式下运行时,制冷剂在气体冷却器2中被冷却介质(空气、水等)冷却后的超临界流体21,经过蓄热型换热罐3进一步过冷,实现较大的回热温降,并将一部分热量用于低温低压制冷剂20的过热温升,另一部分热量通过相变蓄热材料实现蓄热,用于风冷蒸发器6的防止结霜。风冷蒸发器6结构为铜管铝翅片,多排管布置,最外侧高温冷却液通道22内高温冷却液(其中的冷却液种类不限,优先选择水、导热油和氟利昂等)的进出口分别为23、24,其余排管为制冷剂通道 25,制冷剂经制冷剂进口26进入风冷蒸发器6与外界环境换热变为饱和蒸汽。
25.本发明的空气源二氧化碳热泵系统,其运行方式为,二氧化碳工质经过压缩机1后被压缩为高温高压的状态,之后进入气体冷却器2与冷却介质进行换热,被冷却后的超临界流体21经蓄热型换热罐3的高压流体进口11进入套管式回热器10与相变蓄热材料和低温低压的二氧化碳工质20进行换热,实现回热降温,再由高压流体出口17流出,再经过干燥过滤器4后被膨胀阀5节流为低温低压的两相态流体,随后进入风冷蒸发器6中的制冷剂通道25吸收环境中的热量变为低温低压的二氧化碳工质20,并从风冷蒸发器6的制冷剂出口27流出,经蓄热型换热罐3的低压流体进口14进入套管式回热器10进行加热变为过热蒸汽后从低压流体出口12流出,最后经气液分离器7进入压缩机1压缩成高温高压的超临界流体,如此反复循环不断制取热量;与此同时,通过控制程序判断机组是否运行在结霜工况,若是,则通过冷却泵8驱动冷却液经冷却液进口13进入蓄热型换热罐3 内与相变蓄热材料进行换热,被加热后的冷却液经冷却液出口15进入风冷蒸发器6的最外侧高温冷却液通道22内,将蓄热热量提供给蒸发器表面,使表面温度高于液滴的结晶温度,以达到风冷蒸发器6不结霜的目的。
26.本发明系统中,蓄热型换热罐3中的相变蓄热材料为具有合适相变温度和相对较大相变焓的相变材料,例如:相变石蜡。
27.本系统的一个实施例中,使用的气体冷却器2,由杭州沈氏换热器有限公司生产,产品型号为ss

0225gn

u/ss

0050gn

u;使用的干燥过滤器4由派尔克公司生产,产品型号为pkhe

084s

cdh;使用的膨胀阀5由日本鹭宫公司生产,产品型号为jkv

24d,使用的风冷蒸发器6由江苏福缘达热工科技有限公司生产,产品型号为φ9.52

4*36*1450,使用的气液分离器7由派尔克公司生产,产品型号为pkhq

22

cdh;使用的冷却泵8由台州藤原工具有限
公司生产,额定流量为10l/min。
28.本发明的空气源二氧化碳热泵系统的一个实施例的参数如图4中所示,已知参数:环境温湿度:7℃/6℃;冷却水参数:体积流量g=0.54m3/h;进口温度t
w,in
=30℃;水的比热容:c
p
=4.2kj/(kg.℃);热泵系统参数:吸排气压力4mpa/10mpa,制冷剂流量m=0.1kg/s, 过热度

=10k。
29.制热模式:不考虑压力损失,通过matlab仿真计算,可得出各点的焓值;
[0030][0031]
热泵制热量q1=m(h2‑
h3)=20.86kw。
[0032]
压缩机耗功:w=m(h2‑
h1’
)=5.32kw。
[0033]
热泵系统性能cop=q1/w=20.86/5.32=3.92。
[0034]
相变储能热量:q2=m(h3‑
h
3”)

m(h1’

h1)=1.84kw。
[0035]
除霜模式:(结霜量随时间的变化趋势如图5)运行1小时后,结霜厚度达到0.18mm,防止结霜所需热量:q=mc_p

t+m
×
r=2664kj。
[0036]
蓄热提供热量q
蓄热量
=3600
×
q2=6624kj,其相变蓄热量可以满足防止结霜所需要的热量。
[0037]
本实施例的技术效果如图5所示,从图5中可以看出,风冷蒸发器6表面正常结霜的结霜量与结霜厚度随时间变化表现出逐渐增大的趋势,利用本发明中回热器的热量来改善蒸发器表面的温度,使其达不到结霜条件,进而产生防止结霜的效果,使系统能够在结霜工况下也能稳定高效的运行。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1