一种新型两级精馏自复叠天然气液化系统及其控制方法

文档序号:28868912发布日期:2022-02-12 10:44阅读:80来源:国知局
一种新型两级精馏自复叠天然气液化系统及其控制方法

1.本发明属于化工设备领域,具体涉及一种新型两级精馏自复叠天然气液化系统及其控制方法。


背景技术:

2.目前,自复叠天然气液化系统因具有成本低、机构简单、控制难度小等优点,得到了广泛的应用和发展。对于自复叠系统而言,如何提高非共沸制冷剂高低沸点组分的分离效率是改善系统性能的关键因素,制冷剂组分分离越充分,系统的性能相对越好。传统的自复叠制冷系统一般采用气液分离器进行混合制冷剂的组分分离,组分分离效果较差,难以满足超低温自复叠制冷系统高效运行所需的分离纯度要求,从而导致压缩机工作压力过大,系统能效较低。另一方面,由于自复叠制冷系统的工作压比较大,工质在从高压流体降压节流至低压流体的过程中存在较大的节流损失,因此如何降低系统的节流损失也成为了改善自复叠制冷系统性能的关键。
3.专利号为cn02110664.9、公告日为2004年6月2日、名称为深度制冷装置的中国发明专利中公开了利用精馏装置代替传统自复叠制冷系统中的气液分离器,通过改善制冷剂组分的分离效果,从而提升系统效率。但是该系统本质上还是仅实现了一次的制冷剂组分分离,对于天然气液化领域常用的多元混合制冷剂的组分分离效果并不充分,且该系统需将所有高压制冷剂节流至最低压力,节流损失较大,存在巨大的性能提升潜力。


技术实现要素:

4.为了解决现有技术的不足,本发明旨在提供一种新型两级精馏自复叠天然气液化系统,本系统通过引入两级精馏和中间补气技术,提高了系统的蒸发压力,降低压缩机的工作压比,减少系统节流损失,从而大幅提升自复叠天然气液化系统的性能。
5.为了实现上述目的,本发明采用的技术方案为:一种新型两级精馏自复叠天然气液化系统,包括第一压缩机,第一压缩机的进口连接回热器第二通道的出口,第二压缩机的进口连接第一压缩机的出口和第一精馏装置的塔顶换热器出口,第二压缩机的出口通过冷凝器连接第一精馏装置的进口,第一精馏装置的釜底液相出口通过第一节流机构连接第一蒸发冷凝器的第二通道入口;第一蒸发冷凝器的第二通道出口连接第一精馏装置的塔顶换热器入口,第一精馏装置的塔顶气相出口连接第一蒸发冷凝器的第一通道入口,第一蒸发冷凝器的第一通道出口连接回热器的第一通道入口;回热器的第一通道出口通过第二节流机构连接第二精馏装置的入口,第二精馏装置的釜底液相出口通过第三节流机构连接第二蒸发冷凝器的第二通道入口,第二蒸发冷凝器的第二通道出口和第二精馏装置的塔顶换热器出口汇合后连接回热器的第二通道入口;第二精馏装置的塔顶气相出口连接第二蒸发冷凝器的第一通道入口,第二蒸发冷凝器的第一通道出口通过第四节流机构连接蒸发器的制冷剂入口,蒸发器的制冷剂出口连接第二精
馏装置的塔顶换热器入口,蒸发器上设有液化气出口和原料进口。
6.优选地,两个精馏装置均包括底部塔釜、塔身、塔顶及塔顶内部的换热器。
7.优选地,该系统所用工质为二元及以上的非共沸混合工质。
8.优选地,四个节流机构均采用可调式节流机构。
9.优选地,所述回热器、两个蒸发冷凝器采用套管式换热器或者板式换热器,内部设有供工质流动的第一通道和第二通道。
10.相应的,本发明还提出了基于上述新型两级精馏自复叠天然气液化系统的控制方法,具体包括以下过程:1) 第一压缩机和第二压缩机的转速基于蒸发器液化气出口处的液化天然气过冷度进行调节控制;若过冷度小于设定的目标值,则增大压缩机转速,若过冷度大于目标值,则减小压缩机转速;2)冷凝器的风机转速基于冷凝器与环境的最小换热温差进行控制;若最小换热温差小于设定的目标值,则调小冷凝器的风机转速,若最小换热温差大于目标值,则增大冷凝器的风机转速;3)第一节流机构的开度基于第一精馏装置塔顶换热器出口处的制冷剂过热度进行调节控制;若过热度小于设定的目标值,则减小第一节流机构的开度,若过热度大于目标值,则增大第一节流机构的开度;4)第二节流机构的开度基于第二蒸发冷凝器第一通道出口处的制冷剂过冷度进行调节控制;若过冷度大于设定的目标值,则减小第二节流机构的开度,若过冷度小于设定的目标值,则增大第二节流结构的开度;5)第三节流结构的开度基于第二蒸发冷凝器第二通道出口处的制冷剂过热度进行调节控制;若过热度大于设定的目标值,则增大第三节流机构的开度,若过热度小于设定的目标值,则减小第三节流机构的开度;6)第四节流机构的开度基于节流后的制冷剂温度进行调节控制;若温度大于设定的目标值,则减小第四节流机构的开度,若温度小于目标值,则增大第四节流机构的开度。
11.本发明具有的有益效果为:本发明提出的系统采用两级精馏提升混合制冷剂的组分分离效果,增大了进入蒸发器的混合制冷剂中低沸点组分的比例,从而提高系统的蒸发压力,降低压缩机的工作压比,改善系统性能。同时,该新型系统引入中间补气技术,部分流路的制冷剂仅需节流至中间压力即可,无需像常规自复叠系统将所有流路工质全部节流至最低工作压力,大大降低了系统的节流损失,从而进一步提高系统性能。
附图说明
12.图1为本发明的系统循环示意图。
具体实施方式
13.如图1所示,本发明提出了一种新型两级精馏自复叠天然气液化系统及其控制方法。其中,第一蒸发冷凝器105、回热器107、第二蒸发冷凝器110中均设有两条工质流通通道。第一压缩机101的进口连接回热器107的第二通道出口107c,第二压缩机的进口连接第
一压缩机101的出口和第一精馏装置104的塔顶换热器出口104d,第二压缩机102的出口通过冷凝器103连接第一精馏装置104的进口104c,第一精馏装置104的釜底液相出口104a连接第一节流机构106的进口,第一节流机构106的出口连接第一蒸发冷凝器105的第二通道入口105d。第一蒸发冷凝器105的第二通道出口105c连接第一精馏装置104的塔顶换热器入口104e,第一精馏装置104的塔顶气相出口104b连接第一蒸发冷凝器105的第一通道入口105a,第一蒸发冷凝器105的第一通道出口105b连接回热器107的第一通道入口107a,回热器107的第一通道出口107b连接第二节流机构109的入口,第二节流机构109的出口连接第二精馏装置108的入口108c,第二精馏装置108的釜底液相出口108a连接第三节流机构111的入口,第三节流机构111的出口连接第二蒸发冷凝器110的第二通道入口110d,第二蒸发冷凝器110的第二通道出口110c和第二精馏装置108的塔顶换热器出口108e汇合后连接回热器107的第二通道入口107d;第二精馏装置108的塔顶气相出口108b连接第二蒸发冷凝器110的第一通道入口110a,第二蒸发冷凝器110的第一通道出口110b连接第四节流机构112的入口,第四节流机构112的出口连接蒸发器113的制冷剂入口113a,蒸发器113的制冷剂出口113b连接第二精馏装置108的塔顶换热器入口108d,蒸发器上设有液化气出口103c和原料进口103d。
14.第一蒸发冷凝器105、回热器107、第二蒸发冷凝器110中设有供工质流动的第一通道和第二通道。第一蒸发冷凝器105、回热器107、第二蒸发过冷器110为套管式换热器或者板式换热器。该系统所用工质为二元及以上的非共沸混合工质。
15.四个节流机构采用可调式节流机构。
16.两个精馏装置包括底部塔釜、塔身、塔顶及塔顶内部的换热器。
17.该系统的工作流程如下:高温高压制冷剂离开第一压缩机101出口,经冷凝器103冷凝成为两相流体后进入第一精馏装置104中,实现高低沸点组分的一级分离。富含低沸点组分的气态混合制冷剂离开第一精馏装置104的塔顶气相出口104b后,依次通过第一蒸发冷凝器105的第一通道和回热器107的第一通道冷凝成为过冷制冷剂液体;富含高沸点组分的液体制冷剂离开第一精馏装置104的釜底液相出口104a后,在第一节流机构106中节流成为中压两相流体,继而在第一蒸发冷凝器105的第二通道中吸热蒸发,并冷凝上述来自第一精馏装置104塔顶气相出口104b的富含低沸点组分的气态制冷剂,继而在第一精馏装置104的塔顶换热器中进一步吸热后从塔顶换热器出口104d流出,并与第一压缩机101出口的制冷剂汇合后回到第二压缩机102的入口。
18.来自回热器107的第一通道出口107b的富含低沸点组分制冷剂液体在第二节流机构109中节流成为两相制冷剂,再进入第二精馏装置108中实现高低沸点组分的二级分离。富含更多低沸点组分的气态混合制冷剂离开第二精馏装置108的塔顶气相出口108b,在第二蒸发冷凝器110的第一通道中完全冷凝,再通过第四节流机构112节流成为低压两相制冷剂,进而在蒸发器113中蒸发后流入第二精馏装置108的塔顶换热器进一步吸热。第二精馏装置108所分离出的富含较多高沸点组分的液体制冷剂离开釜底液相出口108a后在第三节流机构111中节流成为低压两相制冷剂,继而在第二蒸发冷凝器110的第二通道中吸热蒸发,并冷凝上述来自第二精馏装置108塔顶气相出口108b的气态制冷剂,然后与来自第二精馏塔108塔顶换热器出口108e的制冷剂汇合,最后通过回热器107的第二通道加热升温后回
到压缩机101入口。
19.相应的,本发明还提出了基于上述系统的控制方法,其控制过程包括以下内容:1)第一压缩机101和第二压缩机102的转速基于蒸发器113液化气出口113c处的液化天然气过冷度进行调节控制。若过冷度小于设定的目标值,则增大压缩机转速;若过冷度大于设定的目标值,则减小压缩机转速。
20.2)冷凝器103的风机转速基于冷凝器与环境的最小换热温差(即冷凝器出口制冷剂温度与环境温度的差值)进行控制。若最小换热温差小于设定的目标值,则调小冷凝器103的风机转速;若最小换热温差大于设定的目标值,则增大冷凝器103的风机转速。
21.3)第一节流机构106的开度基于第一精馏装置104塔顶换热器104d出口处的制冷剂过热度进行调节控制。若过热度小于设定的目标值,则减小第一节流机构106的开度;若过热度大于设定的目标值,则增大第一节流机构106的开度。
22.4)第二节流机构109的开度基于第二蒸发冷凝器110的第一通道出口110b处的制冷剂过冷度进行调节控制。若过冷度大于设定的目标值,则减小第二节流机构109的开度;若过冷度小于设定的目标值,则增大第二节流结构109的开度。
23.5)第三节流结构111的开度基于第二蒸发冷凝器110的第二通道出口110c处的制冷过热度进行调节控制。若过热度大于设定的目标值,则增大第三节流机构111的开度;若过热度小于设定的目标值,则减小第三节流机构111的开度。
24.6)第四节流机构112的开度基于节流后制冷剂温度进行调节控制。若温度大于设定的目标值,则减小第四节流机构112的开度;若温度小于设定的目标值,则增大第四节流机构112的开度。
25.与现有技术只在同一压力下进行单级的制冷剂组分分离相比,本发明采用两级精馏,将第一次精馏并冷凝后的富含低沸点组分的制冷剂液体降压节流,进行二级精馏,进一步提高进入蒸发器的低沸点组分的浓度,达到更好的组分分离效果,增大了进入蒸发器的混合制冷剂中低沸点组分的比例,从而提高系统的蒸发压力,降低压缩机的工作压比,改善系统性能。同时,该新型系统引入中间补气技术,部分流路的制冷剂仅需节流至中间压力即可,无需像常规自复叠系统一样将所有流路工质全部节流至最低工作压力,大大降低了系统的节流损失,从而进一步提高系统性能。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1