一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统

文档序号:30881033发布日期:2022-07-26 21:13阅读:144来源:国知局
一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统

1.本发明属于低温制冷技术领域,尤其是涉及一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统。


背景技术:

2.脉管制冷机和gm制冷机等回热式制冷机因其结构简单、运行可靠、振动低等优势,是当前国内外小型氢、氦液化与再冷凝系统的主要制冷技术。
3.以氦气为例。1989年,日本三菱集团等人用gd
x
er
1-x
rh化合物作为三级回热器填料研制了最低无负荷温度可达到3.3k、冷量20mw@4.2k的三级gm制冷机,并首次在不使用jt级的情况下实现了氦液化。1997年德国吉森大学g.thummes、王超等人改进了一台两级脉管低温制冷机,首次使用了利用制冷机的回热器对氦气进行预冷的方式。目前,使用单台制冷机的氦液化的发展主要归功于制冷机性能的提升以及对制冷机回热器富余冷量的发现与利用。利用回热器壁面的富余冷量将氦气在到达冷凝器之前逐渐预冷,极大地减小了显热对饱和温度下制冷量的消耗。但是对于氦气和氦气,室温至液化温度的显热与气液相变潜热的比值分别达到70余倍,如果以单台制冷机液化常压室温氦气,意味着冷端单位冷量可以液化的氦气需要从回热器及一级冷端各温度区间吸收70余倍的富余冷量才足以完全吸收显热,否则将耗费高品位冷量用于吸收显热从而造成液化效率的降低,这对于目前的低温制冷机提出了更高的性能要求。因此,目前单台制冷机的氦液化效率仍处于较低水平,以1w@4.2k制冷量的脉管制冷机为例,其理论液化量为33l/day,而实际bog再冷凝仅为18l/day,室温液化则更少为10-12l/day,仅为理想液化量的30%-60%,能耗高达11-19kw
·
h/l。单机液化量低下导致许多场合需要多台制冷机联合运行才能满足所需氢、氦液化量,造成成本高、能耗高、系统运行复杂等问题。因此,充分利用制冷机的现有冷量进一步提高单机氢、氦的液化能力,是当前小型氢、氦液化器发展的主要方向,而提高液化量的关键在于充分利用回热器富余冷量减小待液化气体过热度的同时强化冷凝器处的膜状冷凝传热。
4.现有的将待液化气体通过盘管式换热器、自然对流换热或环形翅片换热器在回热器管壁外侧预冷的模式,其均属于非接触式换热,换热热阻较大。此外,饱和氦气和氢气在制冷机冷端的膜状冷凝理论的不完善导致氢、氦冷凝器的设计存在偏差,使得回热式制冷机液化氢气、氦气的效率较低,单位体积的液化成本较高。而根本原因均在于间接预冷和间接冷凝液化方式存在较大的传热损失。


技术实现要素:

5.本发明提供了一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,能够克服上述传统小型氦液化器预冷与冷凝过程存在的技术缺陷,同时也利用了j-t制冷机深低温相变制冷效率高的优势。
6.一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,包括回热式制冷
机模块、热端直流模块、冷端直流模块、节流液化模块和气相循环模块;各模块相互连通,形成氦气或氢气工质流动闭合回路;
7.所述的节流液化模块包括通过低温管路依次连通的缓冲腔、间壁式换热器高压通道、节流阀和储液器;所述的气相循环模块包括由回流管路依次连通的间壁式换热器低压通道、换热组件低压通道、控制阀和小型压缩装置;
8.所述回热式制冷机模块中的压缩机传输管上设有旁通,与热端直流模块连接;所述回热式制冷机模块中的回热器冷端换热器下端设有开口,与冷端直流模块连接;
9.所述的热端直流模块将压缩机传输管内的高温高压工质引出,与回流管路内的工质在换热组件内换热冷却后引入至缓冲腔内;所述的冷端直流模块将回热器冷端换热器的低温高压工质引出,并引入至缓冲腔内;
10.缓冲腔内混合的高压低温工质先经过间壁式换热器换热,再通过节流阀进行节流液化后进入储液器;储液器内气相工质通过回流管路分离,依次经过间壁式换热器、换热组件、控制阀和小型压缩装置回收冷量并再压缩后再回流至回热式制冷机模块中制冷机压缩装置的低压腔侧,完成循环。
11.本发明的系统通过直流管路和控制阀从回热式制冷机模块中引出低温高压氢气或氦气工质,在制冷机回热器的冷端产生小股直流;通过节流液化模块进行直接节流产生部分低温液体,实现氢或氦的液化。直接从回热式制冷机模块内部提出部分工质进行液化,具有内预冷、内液化的特点,消除了传统液化模式中待液化气体在制冷机外部流动存在的间接换热热阻,最终实现整机液化性能的提升。
12.进一步地,所述的回热式制冷机模块包括依次连接的制冷机压缩装置、压缩机传输管、回热器热端换热器、回热器、回热器冷端换热器、回热器与膨胀机构传输管、膨胀装置冷端换热器、膨胀装置和膨胀装置热端换热器。
13.进一步地,所述的热端直流模块包括热端直流管路和热端直流流量阀,热端直流管路通过焊接的方式安装在压缩机传输管的旁通上。
14.进一步地,所述的冷端直流模块包括冷端直流管路和冷端直流流量阀,冷端直流管路通过焊接的方式安装在回热器冷端换热器的下端开口处。
15.可选择地,所述回热式制冷机模块的结构形式为同轴型、u型或直线型。
16.可选择地,所述的回热式制冷机模块为gm制冷机、gm型脉管制冷机、斯特林制冷机、斯特林型脉管制冷机或vm制冷机。
17.可选择地,所述的回热式制冷机模块为单级、两级或多级耦合结构,其中,两级或多级耦合结构为热耦合结构或气耦合结构。
18.可选择地,所述的回热式制冷机模块中,制冷机压缩装置为线性压缩机或带阀gm压缩机,两者对应的低压腔侧分别为线性压缩机背压腔和gm压缩机低压罐。
19.与现有技术相比,本发明具有以下有益效果:
20.本发明的结构简单可靠,从回热式制冷机冷端和热端引出直流并从压缩机背压腔引入的过程对制冷机其他部件没有特殊结构要求。使用制冷机内部氦气工质作为液化氦气的来源,代替了室温待液化工质与制冷机气缸壁面换热的模式,避免了预冷换热效率低的缺陷。液化模块采用了节流直接液化形式,相比于制冷机冷量进行冷凝,消除了氦气膜状冷凝换热过程,液化效率更高。综合此两大优势,提升了系统的液化性能。该装置同样适用于
氢液化过程,可实现氢气液化率的提高。
附图说明
21.图1为本发明的整体结构示意图;
22.图2为本发明实施例中换热组件中部分状态点的示意图;
23.图3为本发明实施例中节流液化模块中各状态点的示意图。
24.图中:1-制冷机压缩装置;2-压缩机传输管;3-回热器热端换热器;4-回热器;5-回热器冷端换热器;6-回热器与膨胀机构传输管;7-膨胀装置冷端换热器;8-膨胀装置;9-膨胀装置热端换热器;10-热端直流管路;11-热端直流流量阀;12-冷端直流管路;13-冷端直流流量阀;14-缓冲腔;15-间壁换热器;16-节流阀;17-储液器;18-回流管路;19-换热组件;20-控制阀;21-小型压缩装置。
具体实施方式
25.下面结合附图和实施例对本发明做进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
26.如图1所示,一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,包括回热式制冷机模块、热端直流模块、冷端直流模块、节流液化模块和气相循环模块。
27.回热式制冷机模块包括依次连接的制冷机压缩装置1、压缩机传输管2、回热器热端换热器3、回热器4、回热器冷端换热器5、回热器与膨胀机构传输管6、膨胀装置冷端换热器7、膨胀装置8和膨胀装置热端换热器9。
28.节流液化模块包括通过低温管路依次连通的缓冲腔14、间壁式换热器15高压通道、节流阀16和储液器17;气相循环模块包括由回流管路18依次连通的间壁式换热器15低压通道、换热组件19低压通道、控制阀20和小型压缩装置21。
29.热端直流模块包括热端直流管路10和热端直流流量阀11,热端直流管路10通过焊接的方式安装在压缩机传输管2的旁通上。冷端直流模块包括冷端直流管路12和冷端直流流量阀13,冷端直流管路12通过焊接的方式安装在回热器冷端换热器5的下端开口处。
30.热端直流模块将压缩机传输管2内的高温高压工质引出,与回流管路18内的工质在换热组件19内换热冷却后引入至缓冲腔14内;冷端直流模块将回热器冷端换热器5的低温高压工质引出,并引入至缓冲腔14内;
31.缓冲腔14内混合的高压低温工质先经过间壁式换热器15换热,再通过节流阀16进行节流液化后进入储液器17;储液器17内气相工质通过回流管路18分离,依次经过间壁式换热器15、换热组件19、控制阀20和小型压缩装置21回收冷量并再压缩后再回流至回热式制冷机模块中制冷机压缩装置1的低压腔侧,完成循环。
32.系统运行时,制冷工质气体在回热式制冷机模块内进行交变流动,进行回热式制冷循环。相比于气缸外的换热方式,制冷机内制冷工质预冷直接参与制冷,换热更充分,温度可控性高。
33.节流阀16连接在间壁式换热器15的高压管路末端,制冷工质进行节流膨胀降温液化。液化后产生的液体工质可通过吸收被冷却物热负荷蒸发以利用冷量,也可作为低温液体产品产出并于制冷机压缩装置进行高压补气。
34.储液器17内气相工质通过回流管路18分离,经过热端直流管路与回流管路的换热组件19流动,充分回收回流的气相工质各温区的富余冷量用以先行冷却热端直流工质,降低其温度。最终经过小型压缩装置21再压缩至一定压力后导入制冷机压缩装置背压腔重新进入制冷机系统,完成工质循环。
35.以氦气工质为例,通过冷端直流模块将低温高压工质从回热器冷端换热器引出并引入至节流液化模块的缓冲腔内,通过热端直流模块将高温高压工质从制冷机传输管引出并通过与回流管路换热冷却后引入至节流液化模块的缓冲腔内,将两股直流混合后的高压低温工质通过节流阀进行节流液化,吸收低温热负荷制冷并蒸发之后,气相通过气相循环模块进行预热以回收冷量并冷却热端直流管路内的工质,再将回流工质气体进行压缩增压,最终回流至制冷机压缩装置低压侧,完成循环。
36.相比于传统的使用低温制冷机的小型氦液化系统的液化效率受到回热器富余冷量预冷的换热效率以及饱和温度附近的冷量的限制,本发明设计的液化系统,氦气预冷效率更高,液化率不受制冷机冷量的直接限制。
37.传统液化系统的预冷过程采用缠绕在制冷机气缸壁面的盘管式换热器或者利用氦气自然对流使待液化气体通过制冷机气缸壁与内部制冷工质换热,换热面积与回热器可提取富余冷量有限,过多提取回热器冷量会对制冷机性能造成影响。特别地,对于gm制冷机,回热器与气缸壁面存在气隙传热,影响换热率。现有的实验和数值研究表明,回热式制冷机模块的cop可以通过引入直流流动得以提高,同时与回热器外壁面接触换热的质量流与回热器内的直流(dc流)的热力学原理相同。因此,在本发明中,将传统小型氦液化器的与回热器气缸壁面接触换热的质量流替代为回热器内部的直流,通过从回热器冷端换热器冷端导出制冷工质从而在制冷机内部形成直流,同时将需要回流的低温低压工质中的冷量进行回收用以预冷热端直流工质,温度可控,消除了传统液化器中预冷过程换热效率低的问题。
38.从回热式制冷机冷端与热端导出的直流流率可以根据氦气节流液化量或者制冷量需求、热端直流工质的预冷换热量进行计算,进而可以通过各直流流量阀进行控制。
39.热端直流管路与回流管路的换热组件中部分状态点如图2所示;节流液化模块中各状态点如图3所示。
40.从制冷机引出的总直流流率为冷端直流与热端直流的总和:
[0041][0042]
其中,为从制冷机引出的总直流流率;为从传输管引出的热端直流流率;为从回热器冷端引出的冷端直流流率。
[0043]
以热端直流管路与回热管路换热器部分应用热力学第一定律:
[0044][0045]
其中,h为各点的比焓。
[0046]
则热端直流流率与总直流流率的比值为:
[0047]
[0048]
其中,h
a-hc为高压工质通过换热器的焓差;h
b-hd为低压工质通过换热器的焓差。假设间壁换热器进口与出口的各点温度接近相等,即ta=tb,tc=td。同等温差下的焓差,高压侧高于低压侧,因此冷端直流流率与总直流流率的比值为1-i。
[0049]
在液化工况下,需要从回热式制冷机引出的总直流流量与最终液化量之间为以下关系(节流液化模块中除缓冲腔以外的部分应用热力学第一定律):
[0050][0051]
其中,为液项质量流率,h
l
为液体的比焓,h
x
为冷端引出的直流的比焓,hy为回流气相的比焓。
[0052]
定义液体的产量或者叫液化率为重组上式得:
[0053][0054]
在制冷工况下,直流流率与制冷量关系:
[0055][0056]
其中,q0为制冷量。根据各点的状态可以求得:
[0057][0058]
从上述关系式中可以看出,本发明所提出的液化系统,其液化率(等效制冷量)不再受到回热式制冷机在饱和温度附近的冷量的限制。
[0059]
以一台1w@4.2k的制冷机为例,假设从制冷机引出的5k,2mpa的直流工质节流至一个大气压工况,计算其液化率y约为0.5758kg/s。若为获取单位冷量理论最大液化率33l/day,需要从制冷机引出的总直流流率约为0.085g/s,不足制冷机实际流量幅值的1%,根据现有文献研究,其对制冷机性能的影响可以忽略,且其中大部分直流为从压缩机出口引出的热端直流,只需要提高压缩机出口的质量流率而不会对制冷机性能产生任何影响。节流后产生的液化率可达到33l/day,根据需求调整工况可以继续实现的液化率的巨幅提升,远大于现有的传统小型氦液化器产品所能达到的最大单位冷量液化率(10-12l/day)。因此,本发明可以实现液化系统液化率的巨大提升。
[0060]
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1