废水由含稀释的胶体有机悬液的有机物料和可沉淀的固体组成。将这些固体有效地早期分离非常重要,因为有效分离允许使从固体中回收能量和资源实现最大化,并且早期分离能使水解过程引起的损坏和劣化以及后续浪费的能量释放(不采用需氧氧化工艺回收)最小化。因此,该能量被保存并可进一步增稠或浓缩,并用其他生物或热加工更有效地回收。用于早期有效分离悬液和/或后续增稠浓缩这些悬液的方法和装置是本发明主题。
使用数种方法实现废水有机物的有效分离。最老的方法是用初级澄清器或沉淀池仅物理移除可沉淀的物料。水力保留时间为约1-2小时的这些澄清器被用于有效移除矩形或圆形构造中的固体。固体的移除使用收集器在澄清器的底部进行,用泵将污泥转移至小污水池用于下游处理。在一些情况中,这些固体在压缩区中浓缩至约1-2%固体含量。无论如何,这些固体通常需要在分开的下游处理中进一步增稠。在一些情况中,报道了对来自下游活性污泥系统并泵入初级澄清器的过量污泥进行基于重力的共增稠(例如Ross和Crawford,1985)。预期该方法一方面改善废弃的活性污泥的增稠性能,另一方面移除初级处理中的有机物质。
对该物理分离方法的改良是加入化学品,最早的示例涉及使用化学凝结剂和有机絮凝剂以通过凝结和后续的絮凝过程来更有效地移除更精细的胶体不可沉淀悬液。有效的凝结导致有机胶体“化学吸附”进入可用于后续絮凝的物料。改善的絮凝产生更大颗粒的聚集体,其然后通过沉淀过程被快速移除。这通常被称为化学强化初级处理(CEPT),是实现分离的已知且长期公认的技术。CEPT的典型效率可高达70%的固体移除,并且使用足够的凝结剂甚至可以超过这些值。然而,如果连续地加入,加入显著量的化学品是浪费的,并且对于下游处理会产生显著的化学污泥。因此含金属和聚合物添加剂的最佳剂量可以实现改善固体移除的互补效应(例如Neupane等,2008;Cassel等,2009)。
在20世纪70年代和80年代开发的另一种方法是A-B过程(优先权1979:DE2908134A1;US4487697),其使用生物手段在两步过程的λΑ'步骤中实现有机材料的“生物吸附”(Bohnke,1976;Versprille等,1984)。生物吸附λΑ'步骤在单独的反应器/澄清器组合中实现,其保持在非常短的固体和水力停留时间,固体停留时间通常在0.25-0.5天。此吸附过程通过生物絮凝过程发生,其使用细菌细胞外聚合物(EPS)发生,因为污泥中的细菌在以稍慢于其最大生长速率的速率生长时改变生理状态以形成聚集体。此吸附/生物絮凝产生胶体和可沉淀的悬浮液而无需使用如早期CEPT工艺中所用的无机化学品。A步骤由分离的反应器和澄清器组成,反应器在需氧和/或厌氧或交替条件下进行操作和澄清器经操作以使这些固体的沉降和浓缩最大化以供于下游处理。这些固体的固体含量通常为1%并且需要一些量的再循环(通常为流入流量的30%)来维持该活化的污泥处理。反应器的SRT受到来自澄清器底部的浓缩固体的侵蚀性消耗的控制。该过程的缺点是,它固体分离的效率典型地为50-60%并且固体浓度仅为约1%。此外,该生物絮凝过程不能以与CEPT相同的精确度控制,并且工艺配置、废水温度、通气和剪切速率等影响并导致生物吸附/生物絮凝过程的多变性质。固体通常进一步在下游过程中增稠,过程通常不整合入初级澄清的分离过程中。将压缩颗粒的分离和储存整合的过程已以连续方式应用于初级处理上游的稀释流,用于粗料移除(优先权1976,US3,941,698)。
因而,概括的需求是:1)需要地将生物吸附/生物絮凝步骤整合进入与CEPT处理的初级罐或物理/化学移除相关联的物理移除中。该组合将产生更高效的初级罐。这还允许进行能使占用空间(footprint)、基础设施、能源和设备需求最小化的过程。2).还需要确定适当方式从而以近乎无缝的方式在增稠步骤中增稠这些固体,使得分离的固体被有效地浓缩,并且具有最小的额外占用空间、基础设施、能源和设备。
本发明的目的是尽量减少占用空间、基础设施、能源和设备的使用,以解决本发明的上述需求。
本发明涉及澄清废水的方法,所述方法在两个或更多的澄清器中操作至少两个交替和等同的处理循环,各处理循环由进料阶段和重置阶段组成,其中在每个时间点在至少一个澄清器中进行进料阶段,并且其中所述重置阶段由第一沉淀、废弃、充气和第二沉淀组成。
所提出的方法是将生物吸附或生物絮凝过程整合进入初级澄清或CEPT处理中,通过开发尽量减少占用空间、基础设施、能源和设备的使用的合适方法和设备,以实现这些初级罐中组合的物理/生物或物理/化学/生物移除。此外,固体可在与这些初级罐并置邻接的增稠器中进一步浓缩,从而共同使用设备和谨慎使用可用的液压装置,以对固体的早期有效移除和后续这些固体的增稠进行最佳管理。现有许多具有额外容量的初级罐(primary tank),其可经改进以实现整合在单一罐中的这些不同移除从而节省占地面积、基础设施、能源和设备。
公开的实施例包括开发节约型方案的方法和装置,以改善有机悬浮液中的分离和/或增稠,其由初级罐中的胶体和悬浮物料组成,使用物理、生物和(若需要的)化学手段。分离利用交替的澄清器实现,其便于回退、废弃、充气、沉淀和进料的交替间隔,以最大限度地除去有机悬浮液的同时最大限度地减少使用的资源(包括占用空间、基础设施、能源和设备)的方式进行。增稠过程与沉淀罐并置,二者共利用水力变化,这通过交替排列并共享与初级罐相关的设备和基础设施来实现。
这种方法实现了相当大的处理强化,同时降低了与有机悬浮液分离和增稠相关的能量和设备需求。交替方法允许通过将与进料和回退有关的水力步骤和与充气、沉淀和废弃有关的处理步骤分开来最大化处理。沉淀器废物泵直接连接并置的增稠器并且废物沿切线(tangentially)递送。从增稠器的溢流与通过澄清器和增稠器的交替而返回澄清器的重力同时进行。鼓风机/空气压缩器用于抬升和充气。
此外本发明涉及种澄清废水的装置,其包含以替代性排列操作的至少两个澄清器,各自在所述澄清器的底部附近装有流入管道;在所述澄清器(1a,1b)的底部附近的污泥退出区;使用加压空气的混合系统;和接近所述澄清器的表面的流出物管道。该装置适于进行上述方法。
提供至少一个增稠器用于进一步浓缩污泥。优选每个澄清器提供一个增稠器。
优选入流管沿着所述澄清器的侧壁安排在其底部。这样可用非常低的速度将入流直接导入底部沉淀的污泥。所以,污泥层有助于保留随着流入物引入的颗粒并防止它们污染干净的水。此外,任何引入的有机物料均会被澄清器底部的污泥吸附。
附图的简要说明
图1a-1e显示根据示例实施方式的沉淀和增稠装置的水位和操作顺序的侧视概况图,时间顺序从a,b,c,d,e到f。
图2提供两个交替澄清器的30分钟循环的示例方案。若需要可顺序使用多个澄清器(超过2个)。
图3显示交替澄清器的示意平面图。箭头显示流体向澄清器和在澄清器内的流向。平面图显示平面图底部的沉淀器和切向流增稠器。
图4显示,相比初级罐对照,示例性沉淀器运行的平均流出物总体悬浮固体性能。
图5显示相比初级罐对照,示例性沉淀器运行的平均化学氧化需求性能。
图6显示相比初级罐对照,示例性沉淀器试用装置(pilot)的流入物和流出物化学氧化需求的分级分离。
图7显示切向流增稠器的每分钟旋转的示例性速率概况。
图8显示切向流增稠器的示例性增稠性能。
图9的流动方案显示本发明与总体澄清工艺的可能的整合方式。
图10的另一流动方案显示本发明方法的另一整合方式。
图11是交替澄清器的另一实施方式的示意平面图。
优选实施方式详述
公开的实施方式提供沉淀器,通过交替的活性吸附沉淀器移除废水处理过程中的有机悬液。该沉淀器移除的物料包括胶体和微粒固体。用于移除固体的方法所提供的充气时间仅足以来促进固体聚集并移除胶体固体,通过生物吸附和生物絮凝过程,但该时间不足以引起可溶的可容易降解的有机物料的显著氧化或胶体固体的显著水解和分解。所述装置设计为生产具有小占用空间和基础设施(约30-60分钟水力停留时间)的紧凑设计,用于相关移除并减少移除这些固体所需的能量和设备。
图1显示用于澄清废水的装置的平面图。其包含至少两个交替澄清器1a、1b。该图显示两个澄清器1a、1b,当然也可使用多个澄清器。各澄清器1a、1b装有流入物管道,优选位于澄清器1a、1b的底部附近。图1显示进料沿着澄清器1a、1b的纵向分布以防止过度的局部湍流。图2a、2c分别显示澄清器1a,1b的底部附近的进料和污泥回退的位置。图1和图2d显示优选使用加压的粗气泡空气(coarse bubble air)的搅拌和优选在澄清器1a、1b的底部具有精细气泡分散器的充气网格的混合系统。图2a显示澄清器1a、1b表面附近的流出物管道。
图2c显示各澄清器1a、1b经水力连接至任选的增稠装置,从而来自澄清器1a、1b的废弃固体进入任选的增稠器2a、2b。增稠装置的溢流在优化条件下(例如图2c中)利用重力流至澄清器1a、1b。增稠器的底流(underflow)流至下游污泥处理单元,并且受流出物阀的控制(图2a)。
澄清器1a、1b和增稠器的水平经水力排列,以优选地允许增稠器2a、2b的重力流在澄清器废弃阶段反向溢流(overflow back)回澄清器1a、1b(图2c)。图2c中还显示的从澄清器1a、1b中对废物的提取允许澄清器1a、1b中的水位下降至低于流出物水平,使得后续充气优选不引起从所述澄清器1a、1b向所述流出物的固体溢流。
图1显示从澄清器1a、1b的废物通过与进料管充分分离的排水管泵送,以尽可能减少短路和湍流情况;并以交替顺序连接至气升泵,优选使用与气体混合系统相同的加压空气来源。粗气泡或精细气泡分散器用于转移空气和用于混合/搅拌澄清器1a、1b的内容物。分散器位于澄清器1a、1b的底部并示于图1的平面图。作为示例,该图公开了用于精细气泡分散器的方形方格和用于搅拌的粗气泡分散器的纵向分布。
沉淀装置使用空气,优选使用至少两个鼓风机的构造,一个鼓风机提供空气以抬升所述废弃污泥,随后两个鼓风机提供空气至充气-和空气混合系统,以及将同组鼓风机的加压空气引导至另一澄清器的转换阀。
图2a、2b、2c、2d和2e描述处理循环的阶段。图3提供两阶段的30分钟循环分布用于图2a、2b、2c、2d和2e所述的不同处理步骤。废水的澄清和增稠操作至少两个交替和等同的处理循环;各处理循环由被数个澄清器分割的总循环时间的进料阶段组成。因此,在图3的示例实施方式中,针对两个交替澄清器1a、1b,进料阶段为15分钟,总循环时间的一半。图2a显示第一阶段,其中进料加入未混合沉淀器并且澄清器进料流同时将上清排出流推出。优选地,在该阶段中,将增稠器底流加入下游的污泥处理单元。
在进料阶段之后,沉淀器继续浓缩污泥并按需沉淀(图2b)。
在图2c显示的后续污泥回退阶段中,从沉淀器提取沉淀污泥流并引入任选的增稠器;而增稠器溢流返回所述澄清器1a、1b。
图2d显示充分的空气混合接触阶段的循环时间,图2e显示再次进料和排出时期之前的沉淀时期。该实施方式中,空气混合时期和沉淀时期为6分钟,各示于图3。空气混合接触时期用于搅拌沉淀的污泥、纳入漂浮的污泥,并允许异养型生物生产胞外聚合物质(尤其是当生长速率稍慢于该生物的最大生长速率时),以及胶体和可溶有机物的后续吸附。
来自另一下游或平行过程的活性污泥可加入澄清器1a、1b以改善有机物料的移除。还可在进料进入澄清器1a、1b之前向其加入化学凝结剂(chem)。任选将聚合物加入澄清器1a、1b(优选在混合阶段)以改善有机物料的移除。图4显示AAA沉淀器相比初级对照的AAA生物吸附性能,其中仅加入空气(仅PS)、加入其他过程的废弃活性污泥(PS+WAS),和组合物加入WAS和化学凝结剂(PS+WAS+chem)。该图显示采用这些连续改进设置的每一个时,提供对于总悬浮固体的移除的显著改善。图5显示上述各改进选项的化学需氧量(COD)移除。同样地,AAA(仅PS、PS+WAS和PS+WAS+chem)相对初级对照具有显著的改善。
图6显示AAA沉淀器相对初级对照而言,微粒(可沉淀固体)、胶体和可溶物料在流入物和流出物中的分数。
需要在流出物中具有更小的微粒浓度和胶体分数。AAA沉淀器(仅PS)、补充有WAS(PS+WAS),和补充有化学品(PS+WAS+chem)相比对照都一致具有更低的颗粒和胶体COD,表明对这些有机悬浮物的有限移除的优异的处理性能。在图6中,AAA沉淀器选项移除一些可溶COD,但很多仍可用于下游过程(例如用于脱氮或生物磷移除)因此AAA沉淀器显示出对使用生物吸附(和任选化学吸附)和生物絮凝(和任选化学絮凝)来移除微粒和胶体的显著效果,同时允许可溶部分穿过。
澄清器1a、1b的废物切向加入增稠器2a、2b以诱发柔和圆形流,从而改善增稠性能。图7显示将进料引入期间的切向rpm和即使是在进料加入停止后(约15分钟后)的剩余冲量。增稠器维持其冲量的能力显著降低通过稠化层的增稠器上清的短路和“打小径分支孔”。该慢流还允许增稠的改善与加速。图8显示AAA污泥(仅PS、PS+WAS、PS+WAS+化学品)的增稠性能。仅仅进行先导性试验论证的浅显设计,增稠器就能将固体浓度增稠至超过30,000mg/L(3%)。更深更大的澄清器1a、1b能快速增稠超过5%固体。
沉淀和生物吸收过程通常应用于有机物(主要是碳化合物)的移除而不是用于氮的移除。为了提高氮移除,开发图9所述的下述方案:
由两个澄清器1a、1b和增稠器2a、2b组成的如上所述的单元总称为AAA-沉淀器1。该AAA-沉淀器1经设计使得最大容量等于最大干水流量的两倍(2*Qdw)。
AAA-沉淀器1的排出流在13处分为第一流出物9和滴沥滤器12的进料7。该进料7应等于至少最大旱季流量Qdw。滴沥滤器12中的基本所有的氨均会被氧化为Nox,并且含硝酸盐的再循环流8和滴沥滤器的废弃污泥将被主要加入AAA-沉淀器1的流入物中。
滴沥滤器12还连接消化器4和脱水单元5。捕获的有机物从整合的增稠器2a、2b加入消化器4并且脱水液体可从脱水单元5直接直接加入滴沥滤器12以移除氨。
再循环流8受限以保持通过AAA-沉淀器1的流接近但不超过最大值:最大干水流量的两倍(2*Qdw)。分离单元3的过量流分离为第二流出物10。与第一流出物9一起形成流出物11。
硝酸盐与原污水的碳一起引入AAA-沉淀器的污水层。该设置允许高脱氮速率并且还显著有助于有机物移除性能,因为电子受体不仅在充气时期可用,而且在非充气时期也可用。气味减轻代表硝酸盐再循环的另一好处,因为硝酸盐增加在AAA-反应器中使厌氧降解过程最小的氧化还原电位。
流出物11的质量可以根据具有最小硝酸盐的AAA-流出物9的部分和具有送至流出物11的最小氨的滴沥滤器流出物第二流出物10的部分而进行优化。或者,在一个简化的流程图中,所有滴沥滤器流出物可以直接再循环到没有安装分离单元3的AAA–沉淀器1中。
为了优化有机物去除系统的体积和占用空间,操作不同入流速率的另一方法示于图10。在这种情况下,AAA-沉淀器1应该仅针对旱季水流量设计。过量的流入物流可导向与AAA-沉淀器1平行的常规初级沉淀器21以操作后续流程环节。
旱季水流:为了保持初级处理系统在旱季仍可执行,应提供向初级罐的最小流入物流或向AAA-沉淀器1的流入物流14应设置为最大速率,削去旱季水流峰并将该差别(differential)15加入初级处理装置。
雨季水流:超出AAA-沉淀器1的设计流量的所有流入物流通过旁通道16加入初级处理。流分布受到流入物阀18和流量计的控制。冗余和维护:在AAA沉淀器需要离线时,所有的流入物流加入初级沉淀器。在初级沉淀器需要离线时,设计流量加入AAA沉淀器,而超出流量通过旁通道16加入下游生物处理17。
AAA沉淀器通常设计为旱季流量时约2小时水力保留时间,初级沉淀器设计为雨季流量时约0.5小时水力保留时间。这表示在峰因子约2.5处,初级沉淀器所需的体积约为AAA沉淀器1的反应器体积的一半。
图11,与初级沉淀器相似,AAA沉淀器1优选显示拉伸的几何形状,其中反应器1a、1b的宽度与整合的增稠器2a、2b的宽度相似。本实施方式提供的流动方案污泥再循环阶段中的左侧反应器,而右侧反应器为填充和绘制模式(fill-and draw mode)。需要至少一个漏管23(例如沿着底部的长侧壁安装)用于污泥再循环,其远离流入管24(例如沿底部的相对长侧壁安装)。气升26(例如安装在增稠器八角形和侧壁之间的角空间中)通过连接的漏管吸取沉淀的污泥层,并在水面将废弃污泥斜推入增稠器。增稠器的过量液体可通过其他角空间27返回反应器。流入物流引入通过流入管24的横向开口引入污泥层。沿着浸没的流出管25(例如安装在流入管相对的长侧的水面附近)的流动路径,固体沉淀出来并且有机物被污泥层的生物质吸附。
本发明并不限于上面描述的和在附图中所示的结构、方法和手段。本发明由下面提出的权利要求所限定。