本发明特别涉及一种水净化保质系统。
背景技术:
现有的水净化系统包括原水供应单元、原水净化单元、水气混合器、增压泵、净水箱、热胆、水龙头组件、臭氧发生器和气泵,其中水龙头组件包括冷水龙头和热水龙头,净水箱包括水箱本体及用于对水箱本体封口的水箱盖,水箱本体上连有进水接头和出水接头,水箱本体上还开有蒸汽入口,其中出水接头与热胆进水口和冷水龙头相连通,蒸汽入口与热胆的蒸汽出口相连通,进水接头与增压泵的出水口相连通。原水供应单元通过原水净化单元与水气混合器的进水端相连通,气泵与臭氧发生器的进气端相连通,臭氧发生器的输出端与水气混合器的进气端相连通,水气混合器的出水端与增压泵的入水口相连通,热胆出水口与热水龙头相连通。
原水供应单元提供不符合饮用水标准的原水,经过原水净化单元净化后,通过水气混合器混合臭氧后输出臭氧水至净水箱中。净水箱中储存的水一方面进入热胆加热,通过热水龙头提供热水。净水箱中储存的水另一方面通过冷水龙头提供常温水。
现有的水净化系统具有以下缺点:
第一,臭氧水输送至净水箱后,水中的臭氧经自然分解成富含氧气的适合引用的富氧水,但若取水量少或长期不取水,净水箱和管路中的水会老化或被污染,不适合饮用,危害人体健康。
第二,由于水质易老化和被污染,因而净水箱和管道中易积存细菌和污染物,需要定期对净水箱和管道进行清洗,增加使用和维护成本,同时还会有清洗剂残留,危害人体健康。
第三,在取用水的过程中,由于臭氧水不断补充入水箱本体内,因而新加入的臭氧水不断混合至原来水箱本体内的富氧水中,用户取用的水中含有一定的臭氧,具有特殊腥臭味,影响使用。
第四,当热胆加热时,热胆中的蒸汽通过蒸汽入口进入水箱本体内,在一定程度上对水箱本体内的水进行加热,冷水龙头通过出水接头接到经过蒸汽加热的水,影响冷水口感。
第五,水龙头组件包括一个出水嘴,其中出水嘴为圆柱形,冷水龙头出水口的一半和热水龙头出水口的一半均通过出水嘴与外界连通,最终冷水和热水都是通过出水嘴流出。由于出水嘴管径较大,冷水龙头和热水龙头的实际用到的出水口只有本身出水口面积的一半,因而从冷水龙头和热水龙头出来的水流量较小,流速缓慢,水压小,达不到对出水嘴内壁进行冲刷的效果,因而无法冲刷掉出水嘴内壁上的细菌,造成饮水的污染。同时出水嘴与水龙头组件为一体式连接,不方便对其清洗。
第六,水气混合器易受臭氧腐蚀和返水,从而使得臭氧发生器遇水不产生臭氧并腐蚀臭氧发生器,失去利用臭氧对水进行杀菌消毒功能,工作可靠性低,危害人体健康,增加使用和维护成本,工作可靠性低。
总之,现有水净化系统中,净水不能循环,容易被二次污染,不能按需补氧,品质低。
技术实现要素:
本发明的目的在于,针对上述现有技术的不足,提供一种水质不易陈化且不易被污染、免清洗的全循环水净化保质系统,可按需对净水增氧,除去原水中的有害物质,保留原水中的有益物质,净水供应环节配设了杀菌消毒装置,对水进行杀菌消毒,菌落总数为零,净水品质高,使用和维护成本低,保障人体健康。
为解决上述技术问题,本发明所采用的技术方案是:
一种水净化保质系统,包括原水供应单元、原水净化单元、水气混合器、增压泵、净水箱、水龙头组件、臭氧发生器和气泵,其中水龙头组件包括冷水龙头,净水箱包括水箱本体,水箱本体上连有进水接头和出水接头,原水供应单元通过原水净化单元与水气混合器的进水端相连通,气泵与臭氧发生器的进气端相连通,臭氧发生器的输出端与水气混合器的进气端相连通,水气混合器的出水端通过增压泵与净水箱的进水接头相连通,其结构特点是还包括第一三通接头和单向出水阀,所述第一三通接头的第一端与净水箱的出水接头相连通,第一三通接头的第二端与冷水龙头入水口相连通,第一三通接头的第三端通过单向出水阀与水气混合器的进水端相连通。
借由上述结构,净水箱及供水管路中的水可以通过第一三通接头的第三端全部循环回流至水气混合器进水端,在水气混合器中混合臭氧杀菌消毒,从而对水质进行循环活化再生、增氧杀菌,水质不易陈化且不易被污染,无需清洗,净水品质高,使用和维护成本低,保障人体健康。
作为一种优选方式,所述第一三通接头的第一端和第二端为直通端,第一三通接头的第三端为旁通端且开口朝下。
进一步地,还包括热胆和第二三通接头,所述水龙头组件还包括热水龙头,所述第二三通接头的第一端与净水箱的出水接头相连通,第二三通接头的第二端与热胆入水口相连通,第二三通接头的第三端与第一三通接头的第一端相连通,热胆出水口与热水龙头入水口相连通。
进一步地,还包括水泵,净水箱的出水接头通过所述水泵与单向出水阀的入水口相连通。
作为一种优选方式,所述水泵接于第二三通接头的第三端与第一三通接头的第一端之间,或者所述水泵接于第一三通接头的第三端与单向出水阀之间。
增加水泵可以在净水循环时增压。当水泵接于第二三通接头的第三端与第一三通接头的第一端之间时,通过冷水龙头接常温水时需要电子开关打开水泵才能取到水,这样还有另外一个好处,即,当净水箱长期放置净水应该循环活化消毒时,此时取净水时,水泵打不开,无法取到净水,从而确保取到的每一滴净水都是优质饮用水,即无法取到不合格、不优质的水。
进一步地,所述净水箱还包括用于对水箱本体封口的水箱盖,所述水箱本体内还设有水平隔离板,所述水平隔离板将水箱本体内腔隔成上腔体和下腔体,水平隔离板上开设连通上腔体和下腔体的过水孔;所述进水接头与上腔体相连,所述出水接头与下腔体底部相连。
借由上述结构,由于设置了水平隔离板,臭氧水经过进水接头补充时,首先进入上腔体,并不会直接混入下腔体储存的水内。由于下腔体内储存的水中的臭氧已经经过一段时间的自然分解,因而基本无臭氧的特殊腥味,取水时,下腔体内的水首先通过出水接头放出,上腔体内的臭氧水经过自然分解后再流入下腔体内,从而用户取用到的净水均为经过自然分解臭氧的水,无臭氧的特殊腥臭味,适合饮用。
进一步地,所述水箱本体内还设有竖直隔离板,水箱本体上还开有与热胆蒸汽出口相连的蒸汽入口,所述竖直隔离板将水箱本体内腔隔成左腔体和右腔体,竖直隔离板上开设连通左腔体和右腔体的过水槽;所述出水接头与右腔体相连,所述蒸汽入口与左腔体顶部相连。
借由上述结构,由于蒸汽进入左腔体,左腔体和右腔体隔开,冷水龙头通过出水接头从右腔体取水,因而取用的冷水为未被蒸汽加热的水,冷水取用效果好。
进一步地,所述水龙头组件还包括漏斗形出水嘴,所述漏斗形出水嘴的上部与冷水龙头、热水龙头之间围成密闭的空腔,冷水龙头和热水龙头的出水口均与所述空腔相连通,所述空腔通过漏斗形出水嘴下部的出水通管与外界相连通。
借由上述结构,冷水龙头出水口的全部口径均位于空腔内,热水龙头出水口的全部口径均位于空腔内,从而冷水龙头和热水龙头出来的水流量较大,流速较快,水压较大,冷热水形成涡流、交替互相冲刷,可以对出水嘴内壁进行冲刷,从而冲刷掉出水嘴内壁上的细菌,同时热水还可以对出水嘴内部进行高温消毒,防止细菌增长和繁殖。
作为一种优选方式,所述水气混合器包括第一电磁阀、第三三通接头和进气管路,第三三通接头的第一端为进气端,第三三通接头的第二端为进水端,第三三通接头的第三端为出水端;所述第一电磁阀包括阀座、线圈组件、阀芯组件和复位弹簧,其中阀座与线圈组件相连,阀座内设有过气腔,过气腔通过进气孔与臭氧发生器1904的输出端相连通,线圈组件具有可与水气混合器进气管路相通的进气通道,阀芯组件包括装于进气通道内的电磁杆,复位弹簧置于进气通道内且复位弹簧的一端与电磁杆的一端相接,电磁杆的另一端设有可打开或关闭所述进气孔的堵头,所述过气腔内还设有对所述进气孔封口的瓷片,所述瓷片上开设连通过气孔与过气腔的通孔,所述堵头包括与电磁杆一端固连并与通孔相对的气水闸。
借由上述结构,由于电磁阀通过瓷片与气水闸配合密封过气孔,而瓷片不会被臭氧腐蚀,因而密封性好,不会返水,避免出现臭氧发生器遇水不产生臭氧的情况,避免臭氧发生器被腐蚀,使用和维护成本低,工作可靠性高,不会产生有毒有害物质。
进一步地,所述阀芯组件还包括包覆所述电磁杆的密封套。
利用密封套将电磁阀包覆,可防止电磁杆被臭氧腐蚀而产生对人体有害的物质。
与现有技术相比,本发明无需清洗,净水箱和管道内的水能够全部循环,净水不易陈化且不易被污染,可按需对净水增氧,除去原水中的有害物质,保留原水中的有益物质,净水供应环节配设了杀菌消毒装置,对水进行杀菌消毒,菌落总数为零,净水品质高,使用和维护成本低,保障人体健康。
附图说明
图1为本发明一实施例的方框结构图。
图2为图1中净水箱一实施例的结构示意图。、
图3为图2中所示产品各构件为分离状态时的结构示意图。
图4为图2中浮子的结构示意图。
图5为图4中所示产品各构件为分离状态时的结构示意图。
图6为水位检测器电路结构示意图。
图7为图1中水龙头组件的结构示意图。
图8为图1中水龙头组件的外观示意图。
图9为水气混合器外观示意图。
图10为图9下部一实施例的剖视图。
图11为图10左部的爆炸图。
图12为图9下部另一实施例的剖视图。
图13为图12左部的爆炸图。
图14为水气混合器的电路结构示意图。
图15为硬管快接接头的结构示意图。
图16为图15所示产品各构件为分离状态时的结构示意图。
其中,9为水龙头组件,901为冷水龙头,902为热水龙头,903为第一三通接头,912为出水嘴,9121为空腔,9122为出水通管,10为控制器,1101为热胆,14为浮子,15为净水箱,1401为环形磁铁,1402为底座,14021为环形凹槽,1403为顶盖,14031为摩擦部,1404为第一密封圈,14041为环形凸起,14042为法兰边,14043为定位杆,1405为第一常闭型干簧管,1406为第二常闭型干簧管,1407为进水电磁阀驱动电路,1408为进水电磁阀,1501为水箱本体,1502为水箱盖,1503为进水接头,1504为出水接头,1505为水平隔离板,15051为过水孔,1506为上腔体,1507为下腔体,1508为竖直隔离板,15081为过水槽,1509为蒸汽入口,1510为左腔体,1511为右腔体,1512为检测杆,1513为虹吸口,17为水气混合器,8为硬管快接接头,801为圆环,8011为第一圆弧部件,8012为第二圆弧部件,80121为凸肋部,802为第一硬管,8021为螺纹头,803为连接套,8031为止口,8032为凸筋,804为第二硬管,8041为法兰凸缘,805为第二密封圈,1700为第一电磁阀,1701为阀座,17011为过气腔,17012为进气孔,1702为线圈组件,17021为进气通道,1703为电磁杆,1704为复位弹簧,1705为进气管路,1707为瓷片,17071为通孔,1708为气水闸,1709为密封套,1710为连接件,1711为第三三通接头,1712为进气支管,1713为进气总管,1714为第一电磁阀驱动电路,1715为砂头,1716为公共电极,1717为第一电极,1718为第二电极,1719为第一分压电阻,1720为第二分压电阻,1721为螺母,1722为胶封,1723为橡胶垫圈,1724为橡胶密封件,1725为密封橡胶垫圈,1726为臭氧输送管道,1609为预警单元,1901为原水供应单元,1902为原水净化单元,19021为石英砂净水组件,19022为全自动再生树脂净水组件,19023为第一活性炭净水组件,19024为原水电磁阀,19025为pp棉树脂净水组件,19026为pp棉活性炭净水组件,19027为真空纤维超滤膜净水组件,19028为第二活性炭净水组件,1903为增压泵,1904为臭氧发生器,1905为气泵,1906为水泵,1907为单向出水阀,1908为第二三通接头,1909为空气干燥及过滤组件,1910为第四三通接头,1911为原水阀。
具体实施方式
如图1至图16所示,水净化保质系统包括原水供应单元1901、原水净化单元1902、水气混合器17、增压泵1903、净水箱15、水龙头组件9、臭氧发生器1904和气泵1905,其中水龙头组件9包括冷水龙头901,净水箱15包括水箱本体,水箱本体1501上连有进水接头1503和出水接头1504,原水供应单元1901通过原水净化单元1902与水气混合器17的进水端相连通,气泵1905与臭氧发生器1904的进气端相连通,臭氧发生器1904的输出端与水气混合器17的进气端相连通,水气混合器17的出水端通过增压泵1903与净水箱15的进水接头1503相连通,还包括第一三通接头903和单向出水阀1907,所述第一三通接头903的第一端与净水箱15的出水接头1504相连通,第一三通接头903的第二端与冷水龙头901入水口相连通,第一三通接头903的第三端通过单向出水阀1907与水气混合器17的进水端相连通。
原水净化单元1902包括依次相连通的石英砂净水组件19021、全自动再生树脂净水组件19022、第一活性炭净水组件19023、原水电磁阀19024、pp棉树脂净水组件19025、pp棉活性炭净水组件19026、真空纤维超滤膜净水组件19027、第二活性炭净水组件19028等,根据原水水质及用户的要求,可增加连接一个或多个经卫生行政许可的净水模块组件。第一活性炭净水组件19023与pp棉树脂净水组件19025之间连有原水电磁阀19024。
原水供应单元1901与原水净化单元1902之间设有原水阀1911。
单向出水阀1907、水气混合器17与原水净化单元1902之间通过第四三通接头1910相连通。
气泵1905与臭氧发生器1904的进气端之间连有空气干燥及过滤组件1909。
所述第一三通接头903的第一端和第二端为直通端,第一三通接头903的第三端为旁通端且开口朝下。
水净化保质系统还包括热胆1101和第二三通接头1908,所述水龙头组件9还包括热水龙头902,所述第二三通接头1908的第一端与净水箱15的出水接头1504相连通,第二三通接头1908的第二端与热胆1101入水口相连通,第二三通接头1908的第三端与第一三通接头903的第一端相连通,热胆1101出水口与热水龙头902入水口相连通。
水净化保质系统还包括水泵1906,净水箱15的出水接头1504通过所述水泵1906与单向出水阀1907的入水口相连通。
所述水泵1906接于第二三通接头1908的第三端与第一三通接头903的第一端之间,或者所述水泵1906接于第一三通接头903的第三端与单向出水阀1907之间。
所述净水箱15还包括用于对水箱本体1501封口的水箱盖1502,所述水箱本体1501内还设有水平隔离板1505,所述水平隔离板1505将水箱本体1501内腔隔成上腔体1506和下腔体1507,水平隔离板1505上开设连通上腔体1506和下腔体1507的过水孔15051;所述进水接头1503与上腔体1506相连,所述出水接头1504与下腔体1507底部相连。
所述上腔体1506的高度大于下腔体1507的高度。
所述水箱本体1501内还设有竖直隔离板1508,水箱本体1501上还开有与热胆1101蒸汽出口相连的蒸汽入口1509,所述竖直隔离板1508将水箱本体1501内腔隔成左腔体1510和右腔体1511,竖直隔离板1508上开设连通左腔体1510和右腔体1511的过水槽15081;所述出水接头1504与右腔体1511相连,所述蒸汽入口1509与左腔体1510顶部相连。
所述左腔体1510与右腔体1511的宽度之比为1:4。
水箱盖1502上还开设虹吸口1513,所述虹吸口1513连有空气过滤装置,用于对进入水箱本体1501内的空气进行过滤。
所述水箱本体1501内设有水位检测器,所述水位检测器包括置于水箱本体1501内的检测杆1512、套设于检测杆1512外并可沿检测杆1512移动的浮子14;检测杆1512上对应进水位的位置设有第一常闭型干簧管1405、对应满水位的位置设有第二常闭型干簧管1406,第一常闭型干簧管1405和第二常闭型干簧管1406的一端均接地,第一常闭型干簧管1405和第二常闭型干簧管1406的另一端均与控制器10的输入端电连接,控制器10的输出端通过进水电磁阀驱动电路1407与接在水箱本体1501进水管上的进水电磁阀1408的控制端电连接;所述浮子14内设有与第一常闭型干簧管1405和第二常闭型干簧管1406相互配合的环形磁铁1401。
工作时,浮子14随水位变化而沿检测杆1512上下移动。当水箱本体1501内水位低于进水位时,浮子14位于进水位之下,第一常闭型干簧管1405位于环形磁铁1401的磁场范围外,此时第一常闭型干簧管1405的两触点始终连通,控制器10检测到该状态后,通过进水电磁阀驱动电路1407驱动进水电磁阀1408打开并保持,从而实现对水箱本体1501内加水。当水箱本体1501内水位高于满水位时,浮子14位于满水位之上,第二常闭型干簧管1406位于环形磁铁1401的磁场范围外,此时第二常闭型干簧管1406的两触点始终连通,控制器10检测到该状态后,通过进水电磁阀驱动电路1407驱动进水电磁阀1408关闭并保持,从而停止对水箱本体1501加水。
所述浮子14还包括密封圈1404、中部设有第一贯通孔14022的底座1402、中部设有第二贯通孔14032的顶盖1403,底座1402侧壁上开设环形凹槽14021,环形磁铁1401置于该环形凹槽14021内;所述密封圈1404包括卡设于环形凹槽14021内的环形凸起14041,所述环形凸起14041侧壁顶部具有置于顶盖1403内顶面与底座1402上端口顶面之间的法兰边14042,所述底座1402与顶盖1403可拆卸相连。浮子14拆装方便,当任意一个零部件损坏时,可单独进行更换,使用维修成本低。密封圈1404上设有环形凸起14041和法兰边14042,通过轴向和径向的挤压,可以达到增强密封效果的作用。浮子14对水位的跟随性能好,检测灵敏度和准确性高。
所述环形凸起14041底面还连有三根等长的定位杆14043,所述定位杆14043平行于底座1402中心轴线,定位杆14043的底端与环形磁铁1401相抵接。由于设置了定位杆14043,从而环形磁铁1401在上升或下降的过程中不易晃动,工作可靠性高。
三根定位杆14043沿环形凸起14041周圈均匀分布。
所述顶座与顶盖1403采用螺纹连接。
所述顶盖1403外侧壁上具有便于拧紧着力的摩擦部14031。
所述水龙头组件9还包括漏斗形出水嘴912,所述漏斗形出水嘴912的上部与冷水龙头901、热水龙头902之间围成密闭的空腔9121,冷水龙头901和热水龙头902的出水口均与所述空腔9121相连通,所述空腔9121通过漏斗形出水嘴912下部的出水通管9122与外界相连通。
所述冷水龙头901出水口和热水龙头902出水口均为圆孔,出水通管9122横截面为圆形。
所述冷水龙头901和热水龙头902与出水嘴912可拆卸相连。
所述水气混合器17包括第一电磁阀1700、第三三通接头1711和进气管路1705,第三三通接头1711的第一端为进气端,第三三通接头1711的第二端为进水端,第三三通接头1711的第三端为出水端;所述第一电磁阀1700包括阀座1701、线圈组件1702、阀芯组件和复位弹簧1704,其中阀座1701与线圈组件1702相连,阀座1701内设有过气腔17011,过气腔17011通过进气孔17012与臭氧发生器1904的输出端相连通,线圈组件1702具有可与水气混合器进气管路1705相通的进气通道17021,阀芯组件包括装于进气通道17021内的电磁杆1703,复位弹簧1704置于进气通道17021内且复位弹簧1704的一端与电磁杆1703的一端相接,电磁杆1703的另一端设有可打开或关闭所述进气孔17012的堵头,所述过气腔17011内还设有对所述进气孔17012封口的瓷片1707,所述瓷片1707上开设连通过气孔与过气腔17011的通孔17071,所述堵头包括与电磁杆1703一端固连并与通孔17071相对的气水闸1708。
所述阀芯组件还包括包覆所述电磁杆1703的密封套1709。
如图10和图11所示,在本发明的一实施例中,水气混合器17还包括套在所述密封套1709顶端的连接件1710,所述气水闸1708通过螺母1721紧固在连接件1710上端;所述气水闸1708由陶瓷制成。气水闸1708与连接件1710之间设有橡胶垫圈1723。电磁阀1703与连接件1710之间设有胶封1722。阀座1701与线圈组件1702之间设有橡胶密封件1724。阀座1701与瓷片1707之间设有密封橡胶垫圈1725。
如图12和图13所示,在本发明的另一实施例中,水气混合器17还包括套在所述密封套1709顶端的连接件1710,所述气水闸1708与连接件1710顶端可拆卸相连;所述气水闸1708由橡胶制成。电磁阀1703与连接件1710之间设有胶封1722。阀座1701与线圈组件1702之间设有橡胶密封件1724。阀座1701与瓷片1707之间设有密封橡胶垫圈1725。
水气混合器还包括进气支管1712和进气总管1713,所述进气支管1712和进气管路1705的一端均与进气总管1713相连通,进气支管1712的另一端与过气腔17011相连通,进气管路1705的另一端通过进气通道17021与过气腔17011相连通;进气总管1713的一端密封,进气总管1713的另一端与三通接头1711的第一端相连通。为增加气流总流量,增设进气支管1712和进气总管1713。
所述进气支管1712与进气管路1705均与进气总管1713垂直,进气总管1713上连有水位检测器,水位检测器的输出端与控制器10电连接,控制器10的输出端通过进水电磁阀驱动电路1714与进水电磁阀1700的控制端电连接。由于增设水位检测器,可以及时知道水气混合器17是否返水并采取解决措施。
所述三通接头1711的内设有砂头1715。砂头1715可用于将臭氧均匀混合至水中。所述砂头1715的进气端位于三通接头1711的第一端内并与过气腔17011相连通,砂头1715的出气端位于三通接头1711的第二端与三通接头1711的第三端之间。
所述水位检测器包括用于接地的公共电极1716、用于检测进气总管1713内水位是否超过预警水位的第一电极1717、用于检测外部臭氧发生器输出端与进气孔17012之间的臭氧输送管道1726内水位是否超过故障报警水位的第二电极1718,第一电极1717通过第一分压电阻1719与控制器10的第一检测端电连接,第二电极1718通过第二分压电阻1720与控制器10的第二检测端电连接,所述第一检测端和第二检测端均为可脉冲切换的i/o口和a/d检测口复用端;第一分压电阻1719与第一检测端之间、第二分压电阻1720与第二检测端之间均与电源正极电连接。
水气混合器17还包括预警单元1609,所述预警单元1609与控制器10电连接。
控制器10的第一检测端和第二检测端在常态下均为i/o口,控制器10的第一检测端和第二检测端在脉冲检测水位时为a/d检测口。在常态下,第一检测端和第二检测端以灌电流形态输入控制器10,第一电极1717和第二电极1718上电压为零伏特,不会电解水。而通过脉冲检测水位,检测时间极短,因而电解时间极短,其影响基本可以忽略。从而可以避免当水位超过预警水位时,公共电极与第一电极1717始终连成电解回路、持续电解,避免电解产生对人体有害的物质。
当控制器10检测到臭氧输送管道1726内水位高于第二水位时,控制器10通过进水电磁阀驱动电路1407使进水电磁阀1408关闭,臭氧无法进入三通接头,同时水也无法通过电磁阀进入臭氧发生器。
当控制器10检测到进进气总管1713内水位高于预警水位且低于故障报警水位时,控制单元10控制预警单元1609报警。
所述控制器10为stc12c5404ad芯片及其外围电路。
所述进气管路1705与进气总管1713之间、所述进气管路1705与进气总管1713之间、所述进气总管1713与三通接头1711的第一端之间各通过一硬管快接接头8相连。
如图4和图5所示,硬管快接接头8包括连接套803、在待连接的第一硬管802的连接端有可与连接套803相螺接的螺纹头8021,还包括第一圆弧部件8011、第二圆弧部件8012,第二硬管804连接端有法兰凸缘8041,连接套803的内径大于法兰凸缘8041的外径,第一圆弧部件8011和第二圆弧部件8012可拆卸相连并可形成套在第二硬管804连接端的圆环801,该圆环801的外径大于法兰凸缘8041的外径,圆环801的内侧壁与第二硬管804的外侧壁相贴合,圆环801的外侧壁与连接套803的内侧壁相贴合,圆环801由连接套803外端的止口8031限位。当连接第一硬管802与第二硬管804时,首先将带有法兰凸缘8041的第二硬管804的连接端穿过连接套803,再将第一圆弧部件8011与第二圆弧部件8012连接成套在第二硬管804连接端的圆环801,最后将螺纹头8021与连接套803相螺接,即可实现第一硬管802与第二硬管804之间的连接。本发明利用可拆卸相连的第一圆弧部件8011与第二圆弧部件8012形成圆环状限位部,因而不易变形和移位,硬管之间的连接可靠性高,密封性能好。
所述螺纹头8021的端面上还设有密封圈805;当第一硬管802和第二硬管804连接时,密封圈805夹设于法兰边凸缘的端面与螺纹头8021的端面之间。在现有技术中,由于第二硬管804处没有设置法兰凸缘8041,因而无法在螺纹头8021上设置密封圈805。本发明中,由于第二硬管804处设有法兰凸缘8041,因而可以与螺纹头8021上的密封圈805相抵接,实现密封效果。
所述第一圆弧部件8011上开设凹槽,所述第二圆弧部件8012上设有可卡设于凹槽内的凸肋部80121。安装时,直接将凸肋部80121对准凹槽,再将连接套803向外端一拉,即可实现第一圆弧部件8011与第二圆弧部件8012的连接,方便快捷。
所述连接套803外周还设有便于拧紧着力的凸筋8032。
所述第一硬管802和第二硬管804为pvc硬管。第一硬管802和第二硬管804的直径范围均为2.5mm~250mm。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是局限性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护范围之内。