一种薄膜太阳能电池生产废水的零排放处理工艺的制作方法

文档序号:16386522发布日期:2018-12-22 09:55阅读:301来源:国知局
一种薄膜太阳能电池生产废水的零排放处理工艺的制作方法

本发明属于污水处理技术领域,特别是涉及一种薄膜太阳能电池生产废水的零排放处理工艺。

背景技术

近年来我国光伏产业发展迅猛,新一代薄膜太阳能电池由于具有生产成本低、污染小、不衰退、弱光性能好、光电转换效率高,已成为国内光伏领域投资新的投资热点。薄膜太阳能电池生产会产生含大量重金属镉、氨氮以及大分子有机物的废水,传统的处理方式主要采用单一处理方法,如沉淀法、离子交换法、膜分离法、生物法以及吸附法等,重点针对重金属镉进行处理,使其达到《污水综合排放标准》(gb8978-1996)或者《污水排入城镇下水道水质标准》(gj343-2010)中的排放限值要求。

随着民众环保意识和环保要求的提高,重金属污染也日益受到人们的关注。国家也发布了《重金属污染综合防治“十二五”规划》,大力加强对重金属污染的防控和治理。在这种形势下,优化处理技术,实现废水零排放,已成为薄膜太阳能电池生产废水处理领域的迫切需求。

中国发明专利cn102887603a——铜铟镓硒cigs薄膜太阳电池生产过程中产生的cds废液回收利用方法,该发明公开了一种采用二级过滤、氧化处理、活性炭吸附、离子交换、背渗透及蒸发浓度等多级连续废液处理工艺,来实现含镉工业生产铜铟镓硒薄膜太阳能电池产生的硫化镉废液的零排放;但是,该方法不能对铜铟镓硒薄膜太阳能电池生产废水中大量的氨氮进行去除。

因此,如何克服上述技术问题成为了本领域技术人员亟待解决的技术问题。



技术实现要素:

为了解决上述现有技术的不足,本方法介绍了一种薄膜太阳能电池生产废水的零排放处理工艺。

本发明的目的通过下述方法来实现:

一种薄膜太阳能电池生产废水的零排放处理工艺,包含以下步骤:

(1)废水预处理单元:

s1.混合废水:将各生产工艺段排放的若干种废水混合于调节池;

s2.一级除镉:混合后采用混凝沉淀法,依次投加碱液、破络合剂和重金属捕捉剂,然后投加pac、pam,然后混凝沉淀去除废水中的镉,形成废液一;

s3.蒸氨:加入碱液调节废液一的ph至≥12,排入蒸氨塔进行蒸氨,废水中的氨氮转化为氨气,经纯水吸收转换为氨水进行回收,蒸氨剩余液体形成废液二;

s4.除硫脲:将废液二进行深度氧化处理,直至废液中硫脲浓度小于5mg/l,形成废液三;

s5.二级除镉:废液三进行二级深度除镉工艺,依次投加重金属捕捉剂、pac、pam,经絮凝沉淀至废水中的镉小于0.1mg/l,形成废液四;

s6.除氧化剂:废液四排入氧化剂去除池,投加还原剂除去多余的氧化剂,形成废液五;

(2)废水浓缩处理单元:

s7.过滤:废液五经多介质过滤去除大颗粒物,再经超滤系统去除废水中的亚微米级悬浮物,形成废液六;

s8.ro膜反渗透:废液六经若干段ro膜反渗透,每段ro膜产生的淡水进入下一单元,每段膜产生的浓水依次进入下一段ro膜,此步骤最后一段ro膜产生的浓水进入下一步骤;

s9.蒸发浓缩:对上一步骤排入的浓水进行蒸发浓缩,形成固体废物和冷凝水;

(3)纯水处理单元:

s10.ro膜反渗透:上一单元排入的淡水和冷凝水经若干级ro膜反渗透,其中第一级ro膜产生的浓水返回s8步骤同废液六一并进行ro膜反渗透,其余级ro膜产生的浓水均返回此步骤的第一级ro膜进行循环处理,每一级ro膜产生的淡水依次进入下一级ro膜进行反渗透处理,最后一级ro膜产生的淡水进入下一步骤;

s11.edi处理:上步骤排入的淡水采用连续电除盐技术进行深度处理,形成淡水的电阻率大于10mω·cm后,排入下一步骤,形成的浓水返回s10步骤同上单元排入的淡水和冷凝水一并经过多级ro膜进行反渗透;

s12.uv紫外线处理:对上一步骤的淡水进行紫外杀菌消毒,完成后回用到薄膜太阳能电池生产工艺中。

作为优选,步骤s3中,所述的氨水浓度为15%~22%。

作为优选,步骤s4中,所述的深度氧化处理采用臭氧催化氧化法。

作为优选,步骤s6中,所述的还原剂为亚硫酸氢钠、亚硫酸钠或亚硝酸钠。

作为优选,步骤s7中,所述的超滤系统的超滤膜孔径≤0.2μm。

作为优选,步骤s8中,ro膜的段数为1~5段。

作为优选,步骤s9中,所述的蒸发浓缩采用mvr蒸发器进行蒸发浓缩。

作为优选,步骤s10中,ro膜的级数为1~5级。

作为优选,所述的碱液为氢氧化钠,所述的破络合剂为氯化铁、次氯酸钠或硫化钠,所述的重金属捕捉剂为二硫代胺基甲酸盐类衍生物或黄原酸酯类。

废水中的镉与氨会形成一定的镉氨络合物,影响除镉效果,因此,投加适当的碱液、破络合剂和重金属捕捉剂,形成化学除镉和重金属捕捉剂除镉两种方式,充分确保除镉效果;蒸氨工艺采用蒸汽汽提原理,废水通过换热器与塔釜高温水进行换热后再进入脱氨塔,废水与蒸汽在蒸氨塔内进行传质传热,废水中的氨氮转化为氨气,经纯水吸收转换为氨水,生成的氨水浓度为15%~22%,降低了能耗,充分提高脱氨效率;采用臭氧催化法去除硫脲,与芬顿氧化法相比,不增加系统盐度和污泥量,大大减少了运行成本和危废处理费用;采用mvr蒸发器,将原本需要用冷却水冷凝的二次蒸汽,经压缩机压缩后提高其压力和温度,再送入蒸发加热器作为热源来加热料液,充分利用了二次蒸汽的潜热,节省了能源,降低了能耗。

综上所述,本发明的有益效果在于:

采用本发明所述的处理工艺,能在节约能源、降低能耗的情况下,有效去除废水中的镉、氨氮和硫脲等污染物,出水能达到电池生产镀膜工艺所用的纯水要求,回用至镀膜工艺循环使用,并且氨氮能制成氨水,氨水回用于生产或外销,既能有效解决薄膜太阳能电池生产加工废水的重金属污染物排放问题,又能提高生产用水的循环率,降低能耗,并回收副产物,环保的同时还能产生良好的经济效益,符合可持续发展的需求。

附图说明

图1为本发明实施例一所提供的工艺流程图;

图2为本发明实施例二所提供的工艺流程图。

具体实施方式

以下实施例仅用于说明本发明,但不限制本发明的保护范围。

实施例一

某光伏企业产生的生产废水包括镀膜废液以及膜层清洗废水两部分,主要污染物为镉离子、氨氮、硫脲。镀膜废液污染物浓度较高,水量为5.94m3/h,膜层清洗废水污染物浓度相对较低,水量为5.5m3/h。

镀膜废液和膜层清洗废水混合后,主要污染物浓度为:镉离子56.73mg/l,氨氮4442.4mg/l,硫脲59mg/l,cod2836mg/l;经过一级除镉后,废液中镉离子浓度降低至5mg/l;然后进入蒸氨塔进行蒸氨处理,废水与蒸汽在蒸氨塔内进行传质传热,废水中的氨氮转化为氨气,剩下的废液中氨氮降低至11.67mg/l,氨气经纯水吸收转换为氨水浓度为15%~22%;除氨后的废水再经过除硫脲处理后,废液中硫脲浓度未检出;然后进行二级除镉,经检测,废液中镉离子浓度降低至0.1mg/l,废水cod降低至60mg/l;再经过多介质过滤和0.2μm的超滤膜过滤,除去废水中的大颗粒物和亚微米级悬浮物,此时的废水已经达到《城市污水再生利用-工业用水水质》(gb/t19923-2005)工艺与产品水质要求,可以满足一般的工业用水需求;此时的废水再经一级一段ro膜和一级二段ro膜反渗透处理,浓水中的含盐量得到提高,送入mvr段进行蒸发,得到的含镉固体盐作为危险固体废弃物外送至专业机构处理;蒸发过程中产生的冷凝水和两段ro膜反渗透产生的淡水进入纯水处理工艺,经二级和三级ro膜反渗透处理;再经edi离子交换膜深度处理。

最终产水的硫脲浓度未检出,氨氮浓度未检出,cod浓度未检出,镉离子浓度未检出,电阻率达到10mω·cm,最后经过紫外线杀菌消毒,回用到薄膜太阳能电池生产工艺。

具体操作步骤如下:

(1)废水预处理:

s1.混合废水:将镀膜废液和膜层清洗废水混合于调节池,混合后主要污染物浓度为:镉离子56.73mg/l,氨氮4442.4mg/l,硫脲59mg/l,cod2836mg/l;

s2.一级除镉:混合后通过自动加药装置依次投加氢氧化钠、次氯酸钠和二硫代胺基甲酸盐类衍生物,然后投加pac、pam,然后混凝沉淀去除废水中的镉,形成废液一,废液一中镉离子浓度降低至5mg/l;

s3.蒸氨:加入氢氧化钠调节废液一的ph至12,排入脱氨塔进行蒸氨,废水与蒸汽在脱氨塔内进行传质传热,废水中的氨氮转化为氨气,经纯水吸收转换为氨水,氨水浓度达到15%~22%,剩下的废液形成废液二,废液二中氨氮浓度降低至11.67mg/l;

s4.除硫脲:将废液二采用臭氧催化法进行除硫脲,形成废液三,废液三中硫脲浓度未检出;

s5.二级除镉:废液三依次投加二硫代胺基甲酸盐类衍生物、pac、pam,形成废液四,废液四中镉离子浓度降低至0.1mg/l,废水cod降低至60mg/l;

s6.除氧化剂:废液四排入氧化剂去除池,投加亚硫酸氢钠除去多余的氧化剂,形成废液五;

(2)废水浓缩处理:

s7.过滤:废液五经多介质过滤去除大颗粒物,再经超滤膜孔径为0.2μm的超滤系统去除废水中的亚微米级悬浮物,形成废液六,此时废液六已经达到《城市污水再生利用-工业用水水质》(gb/t19923-2005)工艺与产品水质要求;

s8.一级一段ro膜反渗透:废液六经一级一段ro膜反渗透,形成浓水一和淡水一;

s9.一级二段ro膜反渗透:浓水一经一级二段ro膜反渗透,形成浓水二和淡水二;

(此单元的ro膜段数是根据水质的实际情况而变化的,ro膜的段数为1~5,每段ro膜产生的淡水进入下一单元,每段膜产生的浓水依次进入下一段ro膜,此步骤最后一段ro膜产生的浓水进入下一步骤,若只需要一段ro膜,则产生的浓水无需进入下一段膜,直接进入下一步骤)

s10.蒸发浓缩:将浓水二排入mvr蒸发器中进行蒸发浓缩,形成固体废物和冷凝水一,固体废物为含镉固体盐,固体废物作为危险固体废弃物外送至专业机构处理;

(3)纯水处理:

s11.二级ro膜反渗透:淡水一、淡水二和冷凝水一经二级ro膜反渗透,形成浓水三和淡水三;

s11步骤所产生的浓水三返回s8步骤同废液六一并进行一级一段ro膜反渗透;

s12.三级ro膜反渗透:淡水三经三级ro膜反渗透,形成浓水四和淡水四;

s12步骤所产生的浓水四返回s11步骤同淡水一、淡水二和冷凝水一一并进行二级ro膜反渗透;

(此单元的ro膜级数是根据水质的实际情况而变化的,ro膜的级数为1~5,第一级ro膜产生的浓水返回s8步骤同废液六一并进行ro膜反渗透,其余ro膜产生的浓水均返回此步骤的第一级ro膜进行循环处理,每一级ro膜产生的淡水依次进入下一级ro膜进行反渗透处理,最后一级ro膜产生的淡水进入下一步骤,若ro膜级数只有一级,则产生的淡水排入下一步骤,产生的浓水返回s8步骤同废液六一并进行ro膜反渗透)

s13.edi处理:淡水四采用连续电除盐技术进行深度处理,形成浓水五和淡水五,淡水五的电阻率为10mω·cm;

s13步骤所产生的浓水五返回s11步骤同淡水一、淡水二、冷凝水一和浓水四一并进行三级ro膜反渗透;

s14.uv紫外线处理:对淡水五进行紫外杀菌消毒,然后将出水回用到薄膜太阳能电池生产工艺中循环使用。

实施例二

某企业产生的废水包含高浓度废水和低浓度废水,主要污染物为镉离子、氨氮、硫脲,高浓度废水水量为5.72m3/h,低浓度废水水量为4.86m3/h。

高浓度废水和低浓度废水合并后污染物浓度:镉离子29.32mg/l,氨氮5636.11mg/l,硫脲30mg/l,cod1713.8mg/l;经一级除镉后镉离子浓度降为4.2mg/l;再经蒸氨处理,剩下的废液中氨氮降低至14.32mg/l,氨气经纯水吸收转换为氨水浓度达到15%~22%;除氨后的废水再经深度氧化处理(即臭氧催化氧化法)后,废水中的硫脲浓度未检出;再对废水进行二级除镉,经检测,废水中镉离子浓度降为0.05mg/l,cod浓度降为30mg/l;再经过多介质过滤和0.2μm的超滤膜过滤,除去废水中的大颗粒物和亚微米级悬浮物,此时的废水已经达到《城市污水再生利用-工业用水水质》(gb/t19923-2005)工艺与产品水质要求,可以满足一般的工业用水需求;此时的废水再经一级一段ro膜和一级二段ro膜反渗透处理,浓水中的含盐量得到提高,浓水送入mvr段进行蒸发,得到的含镉固体盐作为危险固体废弃物外送至专业机构处理,蒸发过程中产生的冷凝水和两段ro膜反渗透产生的淡水进入纯水处理工艺,经二级ro膜反渗透处理,再经edi离子交换膜深度处理。

最终产水的硫脲浓度未检出,氨氮浓度未检出,cod浓度未检出,镉离子浓度未检出,电阻率达到12mω·cm,经uv紫外线杀菌消毒后,送至镀膜工艺循环使用。

具体操作步骤如下:

(1)废水预处理:

s1.混合废水:将镀膜废液和膜层清洗废水混合于调节池,混合后主要污染物浓度为:镉离子29.32mg/l,氨氮5636.11mg/l,硫脲30mg/l,cod1713.8mg/l;

s2.一级除镉:混合后通过自动加药装置依次投加氢氧化钠、次氯酸钠和二硫代胺基甲酸盐类衍生物,然后投加pac、pam,然后混凝沉淀去除废水中的镉,形成废液一,废液一中镉离子浓度降低至4.2mg/l;

s3.蒸氨:加入氢氧化钠调节废液一的ph至12,排入脱氨塔进行蒸氨,废水与蒸汽在脱氨塔内进行传质传热,废水中的氨氮转化为氨气,经纯水吸收转换为氨水,氨水浓度达到15%~22%,剩下的废液形成废液二,废液二中氨氮浓度降低至14.32mg/l;

s4.除硫脲:将废液二采用臭氧催化法进行除硫脲,形成废液三,废液三中硫脲浓度未检出;

s5.二级除镉:废液三依次投加二硫代胺基甲酸盐类衍生物、pac、pam,形成废液四,废液四中镉离子浓度降低至0.05mg/l,废水cod降低至30mg/l;

s6.除氧化剂:废液四排入氧化剂去除池,投加亚硫酸氢钠除去多余的氧化剂,形成废液五;

(2)废水浓缩处理:

s7.过滤:废液五经多介质过滤去除大颗粒物,再经超滤膜孔径为0.2μm的超滤系统去除废水中的亚微米级悬浮物,形成废液六,此时废液六已经达到《城市污水再生利用-工业用水水质》(gb/t19923-2005)工艺与产品水质要求;

s8.一级一段ro膜反渗透:废液六经一级一段ro膜反渗透,形成浓水一和淡水一;

s9.一级二段ro膜反渗透:浓水一经一级二段ro膜反渗透,形成浓水二和淡水二;

s10.蒸发浓缩:将浓水二排入mvr蒸发器中进行蒸发浓缩,形成固体废物和冷凝水一,固体废物为含镉固体盐,固体废物作为危险固体废弃物外送至专业机构处理;

(3)纯水处理:

s11.二级ro膜反渗透:淡水一、淡水二和冷凝水一经二级ro膜反渗透,形成浓水三和淡水三;

s11步骤所产生的浓水三返回s8步骤同废液六一并进行一级一段ro膜反渗透;

s12.edi处理:淡水三采用连续电除盐技术进行深度处理,形成浓水四和淡水四,淡水四的电阻率为12mω·cm;

s12步骤所产生的浓水四返回s11步骤同淡水一、淡水二和冷凝水一一并进行二级ro膜反渗透;

s13.uv紫外线处理:对淡水四进行紫外杀菌消毒,然后将出水回用到薄膜太阳能电池生产工艺中循环使用。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1