一种二维过渡金属硫族化合物-碳复合材料的制备方法与流程

文档序号:20448222发布日期:2020-04-17 22:53阅读:247来源:国知局
一种二维过渡金属硫族化合物-碳复合材料的制备方法与流程

本发明属于新材料领域,特别涉及一种二维过渡金属硫族化合物-碳复合材料的制备方法。



背景技术:

二维材料具有原子级的厚度,由于维度的限制使其展现出各种新奇的物理现象和独特的光学、电学及机械性能。在石墨烯被发现之后,各种具有类似结构二维过渡金属硫族化合物(transitionmetaldichalcogenides,tmdcs)已经被广泛的研究。近年来,关于二维过渡金属硫族化合物纳米材料的研究已有广泛报导,尤其是二维过渡金属硫族化合物与碳材料复合使用,展现出优异效果,因此引起了学术界的极大关注。

中国发明专利201711295387.8公开了一种二硫化钼/c/石墨烯复合材料,其通过以下步骤制备:先以钼盐、氨水和季铵盐为原料,制备硫代金属盐前体;将氧化石墨烯和硫代金属盐前体混合研磨,置于微波反应腔中,以300~1000w的微波功率加热1~15min,得到所述二硫化钼/c/石墨烯复合材料。该方法制备得到的复合材料中二硫化钼以纳米片的状态分布,并不能实现二维单片层结构的高效分散。

中国发明专利201910247195.2公开了一种高性能碳/二硫化钼复合材料的制备方法,其是将钼源、硫源、作为还原剂的碳源以及水在反应釜中混合,然后170~240℃反应10~80h,所得产物经抽滤、洗涤、烘干,即获得目标产物c/mos2复合材料。该发明虽然制备得到了多孔复合材料,但同样不能实现二硫化钼在多孔复合材料中的单片层高效分散。

中国发明专利201710254952.x提供了一种二硫化钨/碳纳米纤维复合材料及其制备方法和用途,制备步骤如下:(1)在高速搅拌和油浴条件下,配制聚丙烯腈纺丝溶液;(2)采用静电纺丝法制备聚丙烯腈纳米纤维;(3)通过程序控温,对步骤(2)的聚丙烯腈纳米纤维进行预氧化处理;(4)通过阶段升温,对步骤(3)的预氧化处理的聚丙烯腈纳米纤维进行碳化处理;(5)将一定量的二硫化钨前驱体化合物加入溶剂中,超声得到二硫化钨前驱体溶液;(6)将碳纳米纤维膜浸入二硫化钨前驱体溶液中,接着置于高压反应釜中,在一定温度下进行溶剂热反应,得到二硫化钨/碳纳米纤维复合材料。但该方法制备步骤复杂,难以大量生产;而且制备得到的二硫化钨/碳纳米纤维复合材料是二硫化钨纳米片在碳纳米纤维表面生长的结构,其中的二硫化钨纳米片是由多层甚至数十层片层结构堆叠而成,导致了二硫化钨在复合材料中的分散度较低。

现有的二维过渡金属硫族化合物-碳复合材料制备方法工艺复杂、制备效率低、生产成本高,制备得到的复合材料中二维过渡金属硫族化合物以多层甚至数十层片层结构堆叠在一起,降低了二维过渡金属硫族化合物在复合材料中的分散度,影响复合材料在催化、储能、环保等不同领域的应用效果。



技术实现要素:

本发明的目的在于克服现有技术存在的不足,提供一种二维过渡金属硫族化合物-碳复合材料及其制备方法,以含有大量石油焦微粒和分散型纳米催化剂微粒的重油悬浮床加氢尾油,和/或焦炭包裹着分散型催化剂颗粒的固体废弃物为原料,经过预处理后,在碱金属氢氧化物的作用下,采用碳化和结构活化处理工艺,然后经洗涤、干燥,制备得到单片层结构分散的二维过渡金属硫族化合物-碳复合材料,可广泛用于储能、催化、环保等领域。

本发明是采用以下的技术方案实现的:

一种二维过渡金属硫族化合物-碳复合材料的制备方法,制备过程包括以下步骤:

(1)尾油和/或固体废弃物预处理;

(2)与碱金属氢氧化物混合均匀,在h2/he混合气氛下,升温进行结构活化;

(3)冷却后经洗涤、干燥得到二维过渡金属硫族化合物-碳复合材料。

进一步,所述尾油和/或固体废弃物来自重质原料油经过悬浮床加氢工艺后的产物,所述重质原料油包括重质原油、常压渣油、减压渣油、煤焦油、沥青;

所述悬浮床加氢工艺采用分散型纳米催化剂,所述分散型纳米催化剂为二硫化钼纳米催化剂、二硫化钨纳米催化剂。

进一步,所述尾油中含有大量石油焦微粒和分散型纳米催化剂微粒,所述固体废弃物中焦炭包裹着的分散型催化剂颗粒,而且分散型纳米催化剂以单片层结构均匀分散在尾油和/或固体废弃物中。

进一步,所述步骤(1)中尾油的预处理过程为:首先通过减压蒸馏去除尾油中沸点小于550℃的馏分;将剩余部分使用糠醛萃取,将萃余物冷却后粉碎、研磨至35~400目;所述萃取条件为:温度为60℃,剂油比为0.7,萃取时间为30min;

进一步,所述步骤(1)中固体废弃物的预处理过程为:使用甲苯或溶剂油洗涤固体废弃物,然后使用糠醛萃取,洗净干燥后粉碎、研磨至50~400目;优选的,研磨至50~300目;所述萃取条件为:温度为70℃,糠醛/固体废弃物质量比为1.0,萃取时间为40min。

进一步,所述步骤(2)中预处理后的尾油和/或固体废弃物与碱金属氢氧化物的质量比为1:0.2~10;

所述碱金属氢氧化物为氢氧化钾或氢氧化钠;

所述h2与he的体积比1:9;

所述结构活化过程中,升温速率为2~20℃/min,活化温度为700~1200℃,处理时间为0.5~10小时。

进一步,所述步骤(3)中洗涤过程包括依次采用蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤三个步骤。

进一步,所述复合材料的比表面积为2000~3300m2/g,所述复合材料中二维过渡金属硫族化合物含量为3~50wt%。

本发明的另一目的在于提供一种二维过渡金属硫族化合物-碳复合材料,采用上述制备方法制备得到。

本发明还提供了上述二维过渡金属硫族化合物-碳复合材料应用于锂离子电池负极材料、超级电容器电极材料、水电解制氢催化材料、汞吸附材料领域。

本发明采用重油悬浮床加氢工艺的尾油和/或固体废弃物这一低附加值、极难处理的复杂体系为原料;对于尾油,首先通过减压蒸馏去除其中沸点小于550℃的馏分,然后通过糠醛萃取除去其中的强极性组分;对于固体废弃物,首先通过预处理洗涤清洗去除其中残留的石油烃分子,然后通过糠醛萃取除去其中的强极性组分;最后经过破碎后在高温和混合气氛下采用碱金属氢氧化物对其进行碳化和结构活化,处理过程中尾油大分子或缩合度较低的焦炭分子在分散型纳米催化剂和氢气的作用下能够部分发生加氢裂化反应,生成的小分子烃类物质逃逸离开反应体系使尾油颗粒内部形成孔隙,从而使碱金属氢氧化物能够通过孔隙进入尾油颗粒内部发生活化反应,最终制备得到单片层结构分散的二维过渡金属硫族化合物-碳复合材料。

与现有技术相比,本发明的技术方案具有以下优点和进步:

本发明提供的二维过渡金属硫族化合物-碳复合材料具有工艺简单、原料广泛易得、成本低廉、产物附加值高、产物应用广泛等优点,复合材料中二维过渡金属硫族化合物以单片层结构高度均匀分散,应用于储能、催化、环保等领域具有优异的性能;同时还解决了重油悬浮床加氢工艺中低附加值、难处理的副产物问题。

附图说明

图1为实施例1所制备单片层二硫化钼-碳复合材料的透射电镜照片。

图2为实施例2所制备单片层二硫化钨-碳复合材料的透射电镜照片。

图3为对比例1所制备二硫化钼-碳复合材料的透射电镜照片。

图4为对比例2所制备二硫化钨-碳复合材料的透射电镜照片。

具体实施方式

下面结合附图对本发明的实施方案进行详细描述,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器均为可以通过市售购买获得的常规产品。

实施例1

以委内瑞拉超稠油在分散型二硫化钼纳米催化剂的作用下经过悬浮床加氢反应工艺得到的尾油为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,在温度为60℃,剂油比为0.7,萃取时间为30min的条件下使用糠醛萃取,将处理后剩余部分冷却后粉碎、研磨至35~300目,然后将其与氢氧化钠按质量比1:0.5混合均匀,在h2/he(体积比1:9)混合气氛下,以2℃/min速率升温至1000℃进行结构活化,活化时间6小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到二硫化钼/活性碳复合材料,所述复合材料的比表面积为2519m2/g,所述复合材料中二硫化钼含量为33.6wt%,二硫化钼以单片层结构均匀分散在复合材料中。

实施例2

以沥青在分散型二硫化钨纳米催化剂的作用下经过悬浮床加氢反应工艺得到的固体废弃物为原料,首先使用120#溶剂油洗涤固体废弃物去除其中残留的石油烃分子,在温度为70℃,糠醛/固体废弃物质量比为1.0,萃取时间为40min的条件下使用糠醛萃取,干燥后粉碎、研磨至100~300目,然后将其与氢氧化钠按质量比1:8混合均匀,在h2/he(体积比1:9)混合气氛下,以15℃/min速率升温至1200℃进行结构活化,活化时间0.5小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到二硫化钨/活性碳复合材料,所述复合材料的比表面积为3286m2/g,所述复合材料中二硫化钨含量为47wt%,二硫化钨以单片层结构均匀分散在复合材料中。

实施例3

以中低温煤焦油在分散型二硫化钼纳米催化剂的作用下经过悬浮床加氢反应工艺得到的尾油为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,在温度为60℃,剂油比为0.7,萃取时间为30min的条件下使用糠醛萃取,将处理后剩余部分冷却后粉碎、研磨至35~100目,然后将其与氢氧化钾按质量比1:5混合均匀,在h2/he(体积比1:9)混合气氛下,以12℃/min速率升温至800℃进行结构活化,活化时间4小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到二硫化钼/活性碳复合材料,所述复合材料的比表面积为2885m2/g,所述复合材料中二硫化钼含量为6wt%,二硫化钼以单片层结构均匀分散在复合材料中。

实施例4

以克拉玛依常压渣油在分散型二硫化钼纳米催化剂的作用下经过悬浮床加氢反应工艺得到的固体废弃物为原料,首先使用100#溶剂油洗涤固体废弃物去除其中残留的石油烃分子,在温度为70℃,糠醛/固体废弃物质量比为1.0,萃取时间为40min的条件下使用糠醛萃取,干燥后粉碎、研磨至100~250目,然后将其与氢氧化钾按质量比1:2混合均匀,在h2/he(体积比1:9)混合气氛下,以10℃/min速率升温至1100℃进行结构活化,活化时间8小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到二硫化钼/活性碳复合材料,所述复合材料的比表面积为2718m2/g,所述复合材料中二硫化钼含量为11wt%,二硫化钼以单片层结构均匀分散在复合材料中。

对比例1

以委内瑞拉超稠油在分散型二硫化钼纳米催化剂的作用下经过悬浮床加氢反应工艺得到的尾油为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,在温度为60℃,剂油比为0.7,萃取时间为30min的条件下使用糠醛萃取,将处理后剩余部分冷却后粉碎、研磨至35~300目,然后将其与氢氧化钠按质量比1:0.5混合均匀,在he气氛下,以2℃/min速率升温至1000℃进行结构活化,活化时间6小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到二硫化钼/活性碳复合材料,所述复合材料的比表面积为408m2/g,所述复合材料中二硫化钼含量为4.1wt%,分散的二硫化钼粒径大于50纳米。

对比例2

以沥青在油溶性钨催化剂的作用下经过悬浮床加氢反应工艺得到的固体废弃物为原料,首先使用120#溶剂油洗涤固体废弃物去除其中残留的石油烃分子,在温度为70℃,糠醛/固体废弃物质量比为1.0,萃取时间为40min的条件下使用糠醛萃取,干燥后粉碎、研磨至100~300目,然后将其与氢氧化钠按质量比1:8混合均匀,在h2/he(体积比1:9)混合气氛下,以15℃/min速率升温至1200℃进行结构活化,活化时间0.5小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到二硫化钨/活性碳复合材料,所述复合材料的比表面积为1196m2/g,所述复合材料中二硫化钨含量为19.8wt%,分散的二硫化钨粒径大于80纳米。

对比例3

以委内瑞拉超稠油在分散型二硫化钼纳米催化剂的作用下经过悬浮床加氢反应工艺得到的尾油为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,将处理后剩余部分冷却后粉碎、研磨至35~300目,然后将其与氢氧化钠按质量比1:0.5混合均匀,在h2/he(体积比1:9)混合气氛下,以2℃/min速率升温至1000℃进行结构活化,活化时间6小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到二硫化钼/氧化钼/活性碳复合材料,所述复合材料的比表面积为522m2/g,所述复合材料中二硫化钼含量为3.2wt%,氧化钼含量为1.1wt%,分散的二硫化钼和氧化钼粒径大于80纳米。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1