一种厌氧反应器及废水处理方法与流程

文档序号:21686152发布日期:2020-07-31 22:01阅读:343来源:国知局
一种厌氧反应器及废水处理方法与流程

本发明涉及废水处理领域,特别是涉及一种厌氧反应器及废水处理方法。



背景技术:

工业生产或畜牧业生产过程中会产生大量的废水需要处理,这其中有些废水是含有高悬浮物和高油脂的废水,如集中养猪场、奶酪和乳制品加工、淀粉加工、豆制品加工等领域。目前,国内普遍采用先预处理去除悬浮物和油脂,再进行常规厌氧处理和好氧处理,以达到排放要求或进行沼液储存稳定后还田。

其中,在预处理过程中,由于加入大量的混凝剂和絮凝剂,不仅处理费用高,还增加了废水中的金属和有机物污染,且产生的污泥还需要处理与处置。

另外,厌氧处理过程实质是一系列复杂的生化反应,其中的底物、各类中间产物、最终产物以及各种群的厌氧微生物之间相互作用,形成一个复杂的厌氧微生态系统,类似于宏观生态中的食物链关系,各类微生物间通过营养底物和代谢产物形成共生关系或共营养关系。反应器作为提供微生物生长繁殖的微型生态系统,各类厌氧微生物的平稳生长、物质和能量交换以及水力混合状况的高效协同是保持该系统持续稳定运行和达到处理效果的必要条件。目前常规采用的高速厌氧工艺和反应器形式主要有uasb(上流式厌氧污泥床)反应器、egsb(膨胀颗粒污泥床)反应器、ic(内循环厌氧反应器)、abr(厌氧折流)反应器等,这些反应器尤其是最常用的egsb和ic厌氧反应器,都是基于颗粒污泥的厌氧反应器,对处理进水的悬浮物、油脂、进水cod浓度以及废水类型都有极大的依赖性。



技术实现要素:

本发明的目的在于至少解决现有技术中存在的技术问题之一,提供一种厌氧反应器及废水处理方法,能够提高废水处理效果。

根据本发明的第一方面实施例,提供一种厌氧反应器,包括:

密闭的反应器外体,所述反应器外体的底部前端设有进水口,所述反应器外体的顶部设有沼气出口;

主反应区和污泥沉降区,设于反应器外体内的底部,所述主反应区与污泥沉降区之间设有挡板,所述主反应区连接进水口,所述主反应区内充入厌氧污泥;

厌氧生物填料区,设于所述主反应区和污泥沉降区的上方,所述厌氧生物填料区处设有若干厌氧生物填料;及

溢流器,设于所述反应器外体内的上部后端,所述溢流器在厌氧生物填料区的上方,所述溢流器上设有排水口。

有益效果:此厌氧反应器,废水从进水口进入主反应区,主反应区内厌氧污泥中的厌氧微生物对废水中的有机污染物进行降解,产生沼气,沼气上升到沼气出口,污泥沉降区内的厌氧污泥对废水中的有机污染物进行深度降解,废水向上经过厌氧生物填料区,厌氧生物填料区附着的厌氧微生物对有机污染物进一步降解,废水沿水流方向经主反应区、污泥沉降区和厌氧生物填料区到达反应器外体上部后端的溢流器,最终经排水口排出。本厌氧反应器通过横向和竖向空间的分配,有效利用厌氧反应器内部的空间,在水流方向的不同区域设置不同功能区域,提高废水中悬浮物和油脂在反应器内的停留时间,使进水中的悬浮物和油脂得到充分的厌氧降解,从而提高废水处理效果,不需要预处理去除悬浮物和油脂,以及降低对废水类型的依赖性。

根据本发明第一方面实施例所述的厌氧反应器,所述厌氧生物填料为膜式结构,所述厌氧生物填料竖直设置,各所述厌氧生物填料沿水流方向从前端到后端水平分布。厌氧生物填料采用竖直设置的膜式结构,能够增大厌氧微生物的附着面积,提高对废水中有机污染物的降解作用。

根据本发明第一方面实施例所述的厌氧反应器,所述污泥沉降区内靠近主反应区的位置设有污泥推进器。厌氧污泥在污泥推进器作用下向后端流动,防止厌氧污泥在污泥沉降区的前端沉积,保证污泥沉降区内的厌氧污泥较均匀分布。

根据本发明第一方面实施例所述的厌氧反应器,还包括循环系统,所述循环系统包括循环水管,所述循环水管的一端连接所述溢流器,另一端连接所述进水口,所述循环水管上设有第一水泵。新进的废水混合处理后的废水,能够降低调节进水ph所需的药剂消耗。

根据本发明第一方面实施例所述的厌氧反应器,所述循环系统还包括循环泥水管,所述循环泥水管连接的一端连接所述污泥沉降区,另一端连接所述进水口,所述循环泥水管上设有第二水泵。将部分厌氧污泥从污泥沉降区抽至主反应区,有利于提高主反应区中厌氧污泥的浓度,保持主反应区中的泥水混合强度。

根据本发明第一方面实施例所述的厌氧反应器,所述反应器外体包括无盖壳体和设于所述无盖壳体顶部的膜盖,所述膜盖包括若干层膜,所述膜盖上设有配重,所述膜盖上设有雨水收集孔,所述雨水收集孔处设有雨水分离装置,所述雨水分离装置用于将膜盖顶部的积水导入反应器外体内。通过膜盖密闭反应器外体,膜盖上的雨水可通过雨水分离装置进入反应器外体内部,防止积水。

根据本发明第一方面实施例所述的厌氧反应器,所述膜盖包括从下到上依次设置的底层膜、隔热保温膜和抗紫外线的高强度膜。组成膜盖的三层膜,各层膜采用不同材料,各层膜综合作用下,膜盖具有隔热保温、防紫外线、高强度等功能。

根据本发明第一方面实施例所述的厌氧反应器,所述沼气出口设于靠近所述膜盖与无盖壳体连接的位置,所述沼气出口处设有抽风机,通过抽风机抽吸沼气并收集利用。

根据本发明第一方面实施例所述的厌氧反应器,所述雨水分离装置包括分离管,所述分离管倾斜设置,所述分离管穿过所述膜盖与反应器外体的内部连通,所述分离管底部封口,所述分离管的底部封口正上方的侧面设有若干通孔。膜盖顶部的雨水进入分离管,经侧面的通孔进入反应器外体内,但内部的沼气无法从分离管溢出到外界。

根据本发明的第二方面实施例,提供一种废水处理方法,采用上述的厌氧反应器,废水从反应器外体底部前端的进水口进入主反应区,与厌氧污泥充分混合,厌氧污泥中的厌氧微生物对废水中的有机污染物进行降解,产生沼气,沼气上升,通过沼气出口对沼气进行收集利用,部分厌氧污泥在沼气扰动和水流作用下,沉降到污泥沉降区,对废水中的有机污染物进行深度降解,废水向上经过厌氧生物填料区,厌氧生物填料区附着厌氧微生物,对有机污染物进一步降解,废水沿水流方向经主反应区、污泥沉降区和厌氧生物填料区到达反应器外体上部后端的溢流器,经排水口排出。

有益效果:此废水处理方法,废水沿水流方向经过横向和竖向的不同功能区域,提高废水中悬浮物和油脂在反应器内的停留时间,使进水中的悬浮物和油脂得到充分的厌氧降解,从而提高废水处理效果。

附图说明

下面结合附图对本发明作进一步说明:

图1是本发明实施例的整体结构示意图;

图2是本发明实施例分离管的结构示意图;

图3是本发明实施例简易土坑式的厌氧反应器的结构示意图;

附图标记:反应器外体10、进水口11、主反应区20、挡板21、污泥沉降区30、厌氧生物填料区40、厌氧生物填料41、溢流器50、排水口51、污泥推进器60、循环水管71、第一水泵72、循环泥水管73、第二水泵74、支管75、循环干管76、泥水排放管77、膜盖80、抽风机81、分离管82、通孔83、双层防渗膜90。

具体实施方式

本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。

在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。

本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。

参照图1,本发明实施例厌氧反应器,包括密闭的反应器外体10和设于反应器外体10内的主反应区20、污泥沉降区30、厌氧生物填料区40、溢流器50。反应器外体10的底部前端设有进水口11,水流方向为从前端到后端,反应器外体10的顶部设有沼气出口;主反应区20和污泥沉降区30设于反应器外体10内的底部,主反应区20与污泥沉降区30之间设有挡板21,主反应区20连接进水口11,主反应区20内充入厌氧污泥;厌氧生物填料区40设于主反应区20和污泥沉降区30的上方,厌氧生物填料区40处设有若干厌氧生物填料41;溢流器50设于反应器外体10内的上部后端,溢流器50在厌氧生物填料区40的上方,溢流器50上设有排水口51。

本实施例的厌氧反应器,废水从进水口11进入主反应区20,主反应区20内厌氧污泥中的厌氧微生物对废水中的有机污染物进行降解,产生沼气,沼气上升到沼气出口,通过沼气出口收集利用沼气;沼气上升产生扰动,带动部分厌氧污泥上升和沿水流方向前进,沼气主要产生于主反应区20内,随水流方向越来越少,因此在污泥沉降区30内,沼气的扰动作用较小,部分厌氧污泥逐步沉降于污泥沉降区30中,污泥沉降区30内的厌氧污泥对废水中的有机污染物进行深度降解,主反应区20和污泥沉降区30内的厌氧污泥以游离态的厌氧絮状污泥为主;在沼气扰动作用下,部分厌氧污泥上升并附着于厌氧生物填料区40,废水向上经过厌氧生物填料区40,厌氧生物填料区40附着的厌氧微生物对有机污染物进一步降解。主反应区20、污泥沉降区30与厌氧生物填料区40组成一个以游离絮状厌氧污泥和附着厌氧生物污泥为核心的有机厌氧生态系统。废水沿水流方向经主反应区20、污泥沉降区30和厌氧生物填料区40到达反应器外体10上部后端的溢流器50,最终经排水口51排出。

本厌氧反应器通过横向和竖向空间的分配,有效利用厌氧反应器内部的空间,在水流方向的不同区域设置不同功能区域,提高废水中悬浮物和油脂在反应器内的停留时间,使进水中的悬浮物和油脂得到充分的厌氧降解,从而提高废水处理效果,并且不需要预处理去除悬浮物和油脂。

污泥沉降到污泥沉降区30,避免了现有高速厌氧反应器采用三相分离器分离效果不好导致的污泥流失。

厌氧微生物降解有机污染物产生浮于水面的浮渣,形成浮渣层,溢流器50的排水口51在水面之下,避免浮渣从排水口51流出。排水口51连接排水管排水。

在本实施例中,厌氧生物填料41为膜式结构,厌氧生物填料41竖直设置,各厌氧生物填料41沿水流方向从前端到后端水平分布。厌氧生物填料41采用竖直设置的膜式结构,能够增大厌氧微生物的附着面积,提高对废水中有机污染物的降解作用,各所述厌氧生物填料41沿水平分布能够保证废水须经过厌氧生物填料区40才能到达溢流器50。

污泥沉降区30内靠近主反应区20(即污泥沉降区30的前端)的位置设有污泥推进器60,具体地,污泥推进器60可采用螺旋桨。厌氧污泥在污泥推进器60作用下向后端流动,防止厌氧污泥在污泥沉降区30的前端沉积,保证污泥沉降区30内的厌氧污泥较均匀分布。

本实施例的厌氧反应器还包括循环系统,循环系统包括循环水管71,循环水管71的一端连接溢流器50,另一端连接进水口11,循环水管71上设有第一水泵72。反应器外体10内的上清液即处理后的废水,经溢流器50,溢流器50起分配作用,一部分经排水口51排出,另一部分经循环水管71从进水口11进入主反应区20,与新进的废水混合,充分利用处理后的废水的碱度,对新进的废水的ph进行调节,使废水在适宜的ph范围内,有利于厌氧微生物的降解作用。

进一步地,循环系统还包括循环泥水管73,循环泥水管73连接的一端连接污泥沉降区30,另一端连接进水口11,循环泥水管73上设有第二水泵74。将部分厌氧污泥从污泥沉降区30抽至主反应区20,有利于提高主反应区20中厌氧污泥的浓度。循环泥水管73连接有多个支管75,多个支管75连接污泥沉降区30的多个位置,从污泥沉降区30的多个位置抽吸厌氧污泥,避免污泥沉降区30内厌氧污泥分布不均匀导致不同位置处厌氧反应程度不同。

循环系统包括废水循环和污泥循环,能够降低调节进水ph所需的药剂消耗和保持主反应区20中的泥水混合强度。在本实施例中,循环水管71和循环泥水管73汇聚连接到循环干管76,循环干管76连接进水口11,循环干管76还连接有泥水排放管77,通过泥水排放管77可排放厌氧污泥。

在其中的一些实施例中,反应器外体10包括无盖壳体和设于无盖壳体顶部的膜盖80,膜盖80包括若干层膜,膜盖80上设有配重,膜盖80上设有雨水收集孔,雨水收集孔处设有雨水分离装置,雨水分离装置用于将膜盖80顶部的积水导入反应器外体10内。通过膜盖80密闭反应器外体10,膜盖80上的雨水可通过雨水分离装置进入反应器外体10内部,防止积水。

其中,膜盖80包括从下到上依次设置的底层膜、隔热保温膜和抗紫外线的高强度膜。在配重作用下,底层膜与水面接触,底层膜可采用hdpe材质,即高密度聚乙烯;隔热保温膜起到隔热保温作用,可采用泡沫,防止散热,使内部保持适宜温度,有利于厌氧微生物的降解作用;高强度膜具有高强度,设于最外层,起密闭和保护作用,并且防紫外线,避免紫外线照射杀死厌氧微生物,高强度膜可采用xr-5膜。组成膜盖80的三层膜,各层膜采用不同材料,各层膜综合作用下,膜盖80具有隔热保温、防紫外线、高强度等功能。

沼气出口设于靠近膜盖80与无盖壳体连接的位置,沼气出口处设有抽风机81。在配重作用下,膜盖80的中部大部分面积与水面接触,四周与无盖壳体连接的位置鼓起,该部分鼓起的空间即为沼气储存的空间,沼气集中于该部分空间,便于收集利用,启动抽风机81可将沼气抽出。

参照图2,在本实施例中,雨水分离装置包括分离管82,分离管82倾斜设置,分离管82穿过膜盖80与反应器外体10的内部连通,分离管82底部封口,分离管82的底部封口正上方的侧面设有若干通孔83。膜盖80顶部的雨水进入分离管82,经侧面的通孔83进入反应器外体10内,但内部的沼气无法从分离管82溢出到外界。

由于底部封口以及通孔83设于封口正上方的侧面,沼气在水中浮力作用下为竖直上升,因此不会进入分离管82,内部的沼气无法从分离管82泄露到外界。雨水分离装置设于中部,在配重和抽风机81的负压作用下,膜盖80中部大范围贴住水面,能够防止膜盖80鼓起导致沼气进入分离管82。配重可采用管道,压住膜盖80。

本发明实施例还提供一种废水处理方法,采用上述的厌氧反应器,废水从反应器外体10底部前端的进水口11进入主反应区20,与厌氧污泥充分混合,厌氧污泥中的厌氧微生物对废水中的有机污染物进行降解,产生沼气,沼气上升,通过沼气出口对沼气进行收集利用,部分厌氧污泥在沼气扰动和水流作用下,沉降到污泥沉降区30,对废水中的有机污染物进行深度降解,废水向上经过厌氧生物填料区40,厌氧生物填料区40附着厌氧微生物,对有机污染物进一步降解,废水沿水流方向经主反应区20、污泥沉降区30和厌氧生物填料区40到达反应器外体10上部后端的溢流器50,经排水口51排出。

本实施例的废水处理方法,废水沿水流方向经过横向和竖向的不同功能区域,提高废水中悬浮物和油脂在反应器内的停留时间,使进水中的悬浮物和油脂得到充分的厌氧降解,从而提高废水处理效果。

本实施例的厌氧反应器和废水处理方法,解决了目前在废水处理领域存在的含高悬浮物、高油脂、高有机物浓度废水需要进行预处理的问题,并解决了现有常用厌氧反应器对污水进水浓度、颗粒污泥、运行温度(35~38℃)、ph适应范围(6.6-7.8)以及废水特性的依赖性,可以处理任何依靠厌氧生物降解的废水。

本厌氧反应器,常规设计长宽比为2:1~3:1,设计水深9m,反应器设计运行温度25~40℃,设计容积负荷0.5~3kgcod/(m3·d),可处理进水ph4~11,cod浓度3000~300000mg/l,进水悬浮物含量100~100000mg/l,无需对进水进行预处理和稀释,可直接进入厌氧反应器。进水cod浓度越高,容积负荷越高。整体反应器形式可以是完全的土建结构或钢罐结构,也可以是简易土坑式防渗、四周做混凝土墙的结构。参照图3,为简易土坑式防渗、四周做混凝土墙的结构,反应器外体10的底部和四周设置双层防渗膜90(hdpe+高强度防渗膜),双层防渗膜90延伸到顶部,与膜盖80连接形成闭合,从而形成密闭的厌氧反应器系统。

上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1