一种去除高盐废水中的有机污染物的方法

文档序号:28280520发布日期:2021-12-31 21:28阅读:182来源:国知局
一种去除高盐废水中的有机污染物的方法

1.本发明属于水环境污染物去除领域,具体涉及一种去除高盐废水中的有机污染物的方法。


背景技术:

2.高盐废水指的是含有有机物和至少3.5%(质量浓度)的溶解性固体(tds)的废水。这种废水来源广泛,一方面来自化工、制药、石油、造纸、奶制品加工等多种工业生产的过程中,另一方面是很多沿海城市为了充分利用水资源,直接利用海水作为工业生产用水或者冷却水,这部分污水因为其含盐量偏高也较难处理。
3.在高级氧化领域,传统的ps/pms等工艺,由于其主要起作用的活性物质为自由基,而自由基在高盐条件下,其产生、传质等均会受到一定程度的抑制,或者产生活性较低的其他自由基,因而表现较差,故急需要找到一种新的经济性的方法用来处理含酚废水。
4.近年来,由于其安全性、低成本和易应用,七价锰已经广泛被应用到水污染控制中来。传统的高锰酸钾工艺,对难降解污染物的降解效果有限。


技术实现要素:

5.本发明的目的是要解决现有方法对高盐废水中有机污染物的降解效果差的问题,而提供一种去除高盐废水中的有机污染物的方法。
6.一种去除高盐废水中的有机污染物的方法,是按以下步骤完成的:
7.一、将含有有机污染物的高盐废水的ph值调节至近中性;
8.二、向ph值为近中性的高盐废水中加入碳材料和高锰酸钾,再在搅拌条件下进行反应,得到去除有机污染物的高盐水。
9.本发明的原理及优点:
10.1、碳材料(如cnt)对污染物的吸附作用;
11.2、mno2对污染物的作用,包括吸附主导的界面作用和表面络合物主导的电子转移作用;
12.3、碳材料(如cnt)催化mn(vii)产生中间价态锰离子mn(v)、mn(vi),这些离子也具有较强的氧化作用;
13.本发明中,碳材料(如cnt)和mn(vii)的协同作用,能够产生活性很强的中间价态锰活性物种,尤其是二氧化锰,通过吸附和氧化实现在高盐条件下有机污染物的快速降解,且副产物二氧化锰易通过过滤除去,水中残留的锰离子含量也符合相关规定。结果表明,该体系可以快速降解酚类物质,且初始ph、共存离子(ca
2+
、mg
2+
)以及腐殖酸的改变均对反应影响较小;
14.4、本发明工艺简单,操作方便,反应速率快、成本低且产物易去除,能够为高盐废水的处理提供一个较好的思路,在实际运用中具有较高的实践价值。
15.5、本发明有望实现高盐条件下工业废水的大规模处理。
16.本发明适用于去除高盐废水中的有机污染物。
附图说明
17.图1为2,4

二氯苯酚在不同体系下的降解效果图;
18.图2为2,4

二氯苯酚在不同ph值的cnt+kmno4体系下的降解曲线;
19.图3为2,4

二氯苯酚在钙离子和镁离子存在时的cnt+kmno4体系下的降解曲线;
20.图4为2,4

二氯苯酚在不同腐殖酸浓度的cnt+kmno4体系下的降解曲线。
具体实施方式
21.以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
22.具体实施方式一:本实施方式一种去除高盐废水中的有机污染物的方法是按以下步骤完成的:
23.一、将含有有机污染物的高盐废水的ph值调节至近中性;
24.二、向ph值为近中性的高盐废水中加入碳材料和高锰酸钾,再在搅拌条件下进行反应,得到去除有机污染物的高盐水。
25.具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中所述的高盐废水中的盐的浓度低于0.5mol/l;所述的盐为氯化钠或硫酸钠。其它步骤与具体实施方式一相同。
26.具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的高盐废水中有机污染物浓度为0.001mmol/l~10mol/l。其它步骤与具体实施方式一或二相同。
27.具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤一中所述的高盐废水中有机污染物为酚类污染物、胺类污染物、水合肼类、抗生素类等污染物。其它步骤与具体实施方式一至三相同。
28.具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:所述的酚类污染物为氯酚或溴酚。其它步骤与具体实施方式一至四相同。
29.具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤一中将含有有机污染物的高盐废水的ph值调节至4~9;使用10mmol/l乙酸溶液和10mmol/l硼酸钠溶液将含有有机污染物的高盐废水的ph值调节至4~9。其它步骤与具体实施方式一至五相同。
30.具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤二中所述的碳材料为碳纳米管、石墨烯、纳米金刚石、活性炭纤维或生物炭;所述的碳纳米管的外径为1nm~100nm;所述的碳材料的投加量为0.001g/l~100g/l;步骤二中所述的高锰酸钾的投加量为0.001mmol/l~1mol/l。其它步骤与具体实施方式一至六相同。
31.具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤一中所述的高盐废水中还含有金属离子和有机物中的一种或两种。其它步骤与具体实施方式一至七相同。
32.具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:所述的金属离子为钙离子或镁离子;所述的有机物为腐殖酸、富里酸、单宁酸、没食子酸。其它步骤与具体实施方式一至八相同。
33.具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:步骤二中采用滤头过滤去除有机污染物的高盐水或将含有机污染物的高盐水沉淀,再加入盐酸羟胺终止反应,得到待测样品;采用高效液相色谱进行测定,通过标准曲线测定对目标有机污染物的浓度,通过反应前后的浓度变化计算在不同反应时间和反应条件下有机污染物的去除率;将待测样品室温下静置沉淀,取上层清液采用浊度仪进行悬浮物浓度分析,通过反应前后的浊度变化计算不同反应时间和反应条件下悬浮物的去除率。其它步骤与具体实施方式一至九相同。
34.本实施方式中有机物的高盐水沉淀的时间为2~4h。
35.下面结合附图和实施例对本发明进行详细的说明。
36.实施例1:一种去除高盐废水中的有机污染物的方法,是按以下步骤完成的:
37.一、将200ml含有2,4

二氯苯酚的高盐废水的ph值调节为7;
38.步骤一中所述的含有2,4

二氯苯酚的高盐废水中2,4

二氯苯酚的浓度为0.05mmol/l,氯化钠的浓度为0.5mol/l;
39.二、将200mlph值为7的高盐废水的温度调节至25℃,再加入0.02g碳纳米管(cnt)和0.004mmol高锰酸钾,再在搅拌速度为800r/min下进行反应0~10min,得到去除有机污染物的高盐水。
40.对比实施例1:本实施例与实施例1的不同点是:步骤二中将200mlph值为7的高盐废水的温度调节至25℃,再加入0.02g碳纳米管(cnt),再在搅拌速度为800r/min下进行反应0~10min,得到去除有机污染物的高盐水。其它步骤及参数与实施例1均相同。
41.对比实施例2:本实施例与实施例1的不同点是:步骤二中将200mlph值为7的高盐废水的温度调节至25℃,再加入0.004mmol高锰酸钾,再在搅拌速度为800r/min下进行反应0~10min,得到去除有机污染物的高盐水。其它步骤及参数与实施例1均相同。
42.分别在0、1、2、5、10min时间点取样(样品为实施例1、对比实施例1和对比实施例2得到的去除有机污染物的高盐水),采用孔径为0.22μm的滤头过滤1ml去除有机污染物的高盐水,再加入20μl浓度为1mol/l的盐酸羟胺终止反应,得到待测样品;采用高效液相色谱进行测定,通过标准曲线测定对目标有机污染物的浓度,通过反应前后的浓度变化计算在不同反应时间和反应条件下有机污染物的去除率;将待测样品室温下静置沉淀2h,取上层清液采用浊度仪进行悬浮物浓度分析,通过反应前后的浊度变化计算不同反应时间和反应条件下悬浮物的去除率,见图1所示。
43.图1为2,4

二氯苯酚在不同体系下的降解效果图;
44.图1的结果表明,cnt/mn(vii)体系中,2,4

dcp在10min之内实现了90%的降解,而单独cnt的吸附体系和单独高锰酸钾氧化体系对2,4

dcp的降解率仅仅为49%和15%。
45.实施例2:一种去除高盐废水中的有机污染物的方法,是按以下步骤完成的:
46.一、将200ml含有2,4

二氯苯酚的高盐废水的ph值调节为4;
47.步骤一中所述的含有2,4

二氯苯酚的高盐废水中2,4

二氯苯酚的浓度为0.05mmol/l,氯化钠的浓度为0.5mol/l;
48.二、将200mlph值为4的高盐废水的温度调节至25℃,再加入0.02g碳纳米管(cnt)和0.004mmol高锰酸钾,再在搅拌速度为800r/min下进行反应0~10min,得到去除有机污染物的高盐水。
49.对比实施例3:本实施例与实施例2的不同点是:一、将200ml含有2,4

二氯苯酚的高盐废水的ph值调节为5。其它步骤及参数与实施例1均相同。
50.对比实施例4:本实施例与实施例2的不同点是:一、将200ml含有2,4

二氯苯酚的高盐废水的ph值调节为6。其它步骤及参数与实施例1均相同。
51.对比实施例5:本实施例与实施例2的不同点是:一、将200ml含有2,4

二氯苯酚的高盐废水的ph值调节为7。其它步骤及参数与实施例1均相同。
52.对比实施例6:本实施例与实施例2的不同点是:一、将200ml含有2,4

二氯苯酚的高盐废水的ph值调节为8。其它步骤及参数与实施例1均相同。
53.对比实施例7:本实施例与实施例2的不同点是:一、将200ml含有2,4

二氯苯酚的高盐废水的ph值调节为9。其它步骤及参数与实施例1均相同。
54.分别在0、1、2、5、10min时间点取样(实施例2、对比实施例3~对比实施例7得到的去除有机污染物的高盐水),采用孔径为0.22μm的滤头过滤1ml去除有机污染物的高盐水,再加入20μl浓度为1mol/l的盐酸羟胺终止反应,得到待测样品;采用高效液相色谱进行测定,通过标准曲线测定对目标有机污染物的浓度,通过反应前后的浓度变化计算在不同反应时间和反应条件下有机污染物的去除率;将待测样品室温下静置沉淀2h,取上层清液采用浊度仪进行悬浮物浓度分析,通过反应前后的浊度变化计算不同反应时间和反应条件下悬浮物的去除率,见图2所示。
55.实施例2、对比实施例3~对比实施例7中2,4

二氯苯酚在不同ph值的cnt+kmno4体系下的降解曲线见图2所示;
56.图2为2,4

二氯苯酚在不同ph值的cnt+kmno4体系下的降解曲线;
57.图2的结果表明,降解效果最好的是中性条件,酸性和碱性会稍微抑制氯酚的降解,但是最差也能达到60%的降解率。
58.实施例3:一种去除高盐废水中的有机污染物的方法,是按以下步骤完成的:
59.一、将200ml含有2,4

二氯苯酚的高盐废水的ph值调节为7;
60.步骤一中所述的含有2,4

二氯苯酚的高盐废水中2,4

二氯苯酚的浓度为0.05mmol/l,氯化钠的浓度为0.5mol/l,钙离子的浓度为10mmol/l,镁离子的浓度为10mmol/l;
61.二、将200mlph值为7的高盐废水的温度调节至25℃,再加入0.02g碳纳米管(cnt)和0.004mmol高锰酸钾,再在搅拌速度为800r/min下进行反应0~10min,得到去除有机污染物的高盐水。
62.分别在0、1、2、5、10min时间点取样(实施例3得到的去除有机污染物的高盐水),采用孔径为0.22μm的滤头过滤1ml去除有机污染物的高盐水,再加入20μl浓度为1mol/l的盐酸羟胺终止反应,得到待测样品;采用高效液相色谱进行测定,通过标准曲线测定对目标有机污染物的浓度,通过反应前后的浓度变化计算在不同反应时间和反应条件下有机污染物的去除率;将待测样品室温下静置沉淀2h,取上层清液采用浊度仪进行悬浮物浓度分析,通过反应前后的浊度变化计算不同反应时间和反应条件下悬浮物的去除率,见图3所示。
63.图3为2,4

二氯苯酚在钙离子和镁离子存在时的cnt+kmno4体系下的降解曲线;
64.图3结果表明,随着共存阳离子浓度的增加,基本上不会影响对污染物的降解效果。
65.实施例4:一种去除高盐废水中的有机污染物的方法,是按以下步骤完成的:
66.一、将200ml含有2,4

二氯苯酚的高盐废水的ph值调节为7;
67.步骤一中所述的含有2,4

二氯苯酚的高盐废水中2,4

二氯苯酚的浓度为0.05mmol/l,氯化钠的浓度为0.5mol/l,腐殖酸ha的浓度为1mg/l;
68.二、将200mlph值为7的高盐废水的温度调节至25℃,再加入0.02g碳纳米管(cnt)和0.004mmol高锰酸钾,再在搅拌速度为800r/min下进行反应0~10min,得到去除有机污染物的高盐水。
69.实施例5:一种去除高盐废水中的有机污染物的方法,是按以下步骤完成的:
70.一、将200ml含有2,4

二氯苯酚的高盐废水的ph值调节为7;
71.步骤一中所述的含有2,4

二氯苯酚的高盐废水中2,4

二氯苯酚的浓度为0.05mmol/l,氯化钠的浓度为0.5mol/l,腐殖酸ha的浓度为5mg/l;
72.二、将200mlph值为7的高盐废水的温度调节至25℃,再加入0.02g碳纳米管(cnt)和0.004mmol高锰酸钾,再在搅拌速度为800r/min下进行反应0~10min,得到去除有机污染物的高盐水。
73.分别在0、1、2、5、10min时间点取样(实施例1、实施例4和实施例5得到的去除有机污染物的高盐水),采用孔径为0.22μm的滤头过滤1ml去除有机污染物的高盐水,再加入20μl浓度为1mol/l的盐酸羟胺终止反应,得到待测样品;采用高效液相色谱进行测定,通过标准曲线测定对目标有机污染物的浓度,通过反应前后的浓度变化计算在不同反应时间和反应条件下有机污染物的去除率;将待测样品室温下静置沉淀2h,取上层清液采用浊度仪进行悬浮物浓度分析,通过反应前后的浊度变化计算不同反应时间和反应条件下悬浮物的去除率,见图4所示。
74.图4为2,4

二氯苯酚在不同腐殖酸浓度的cnt+kmno4体系下的降解曲线。
75.图4结果表明,随着腐殖酸ha浓度的增加,基本上不会影响对污染物的降解效果。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1