本发明属于多孔微球色谱填料的制备领域,具体涉及一种多孔二氧化硅微球手性色谱填料的制备方法。
背景技术:手性(Chirality)是指物质的本身与其镜像不能完全重合,是自然界本质属性之一,手性现象在药物合成中非常普遍,手性药物大多含一个或多个手性中心,因此含有一对及一对以上的对映异构体。而不同手性对映体往往表现出不同的药物活性,有些手性异构体甚至含有毒性,因此对于手性药物的分离显得十分重要。如今,随着色谱理论基础研究的日益深入、色谱技术的日臻完善,并且由于高效液相色谱操作时间较短且有较高的载样量,有利于得到一定量的对映体单体,高效液相色谱法分离技术已成为一项重要的对映体制备和纯化的工具,在对映体分离及单一异构体制备中被广泛应用。高效液相色谱技术(HPLC)是自20世纪70年代发展起来的一项高效快速的新型分析分离技术,是一种应用广泛的分离手段,现已成为化学化工、食品卫生、药物检测、环保监测等诸多领域中最常用的分析分离手段。而液相色谱填料则是高效液相色谱技术赖以建立和发展的关键性基础。硅胶即二氧化硅,因其具有优异的机械强度、易控制的孔结构和比表面积、较好的化学稳定性和热稳定性以及表面含有丰富的硅羟基易于进行化学键合或改性等诸多特性,成为一种目前最为理想的液相色谱填料基质。以硅胶为基质的现代高效液相色谱填料占90%以上,绝大部分为全多孔球形基质。全多孔球形硅胶的制备通常是按照:反应,凝胶,陈化,洗涤,干燥,焙烧的流程进行的。目前现有的作为填料的全多孔球形硅胶的制备方法为:堆砌硅珠法生产硅胶微球,即,使硅胶微球与模板剂复活,进行热处理后将模板剂去除产生孔洞。其存在着制备出的微球定型较差,且大小不一的不足之处。
技术实现要素:本发明要解决的技术问题是提供一种全多孔硅胶微球手性色谱填料的制备方法,采用本发明方法制备而得的色谱填料能对手性药物进行手性分离。为了解决上述技术问题,本发明提供一种全多孔硅胶微球手性色谱填料的制备方法,包括以下步骤:1)、将四乙氧基硅烷(TEOS)加入到无水乙醇中,于25~35℃搅拌20~40分钟(较佳为30℃搅拌30分钟),再加入稳定剂、致孔剂,混合充分后调节pH为2±0.1,继续搅拌1~2小时后,将温度升高至85~95℃(从而将全部的无水乙醇蒸除),然后再通入惰性气体,在惰性气体保护下继续保温(85~95℃)搅拌22~26小时(较佳24小时),最后将温度升至130~150℃并保温23~25h(较佳为140℃并保温24h,目的是将剩余液态有机物蒸出),得到聚乙氧基硅烷;四乙氧基硅烷与稳定剂的质量比为50:1.2~1.8(较佳为50:1.5);四乙氧基硅烷与致孔剂的质量比为50:7~8(较佳为50:7.5);2)、按照1:0.9~1.1:1.8~2.2(较佳为1:1:2)的质量比,将聚乙氧基硅烷与去离子水、无水乙醇充分混合,调节pH为2±0.1,然后于25~35℃凝胶2.5~3.5小时(较佳为30℃凝胶3小时),再于40~45℃中陈化45~50小时(较佳为48小时)后,接着用酒精洗涤后、干燥,最后于480~520℃热处理9.5~10.5小时(较佳为500℃热处理10小时),得全多孔硅胶微球;3)、将步骤2)所得的全多孔微球填料于0.1g/ml盐酸中回流活化(将微球置于盐酸溶液中并在冷凝管中进行回流),然后放入0.1g/ml直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)溶液中搅拌5~7小时(较佳为6小时),对其进行改性处理,最后干燥,得到全多孔硅胶微球手性色谱填料。作为本发明的全多孔硅胶微球手性色谱填料的制备方法的改进:所述步骤3)中,回流活化的次数为5~7次,每次50~70min。作为本发明的全多孔硅胶微球手性色谱填料的制备方法的进一步改进:所述步骤1)中的稳定剂为环己烷;致孔剂为聚乙二醇(其分子量为400)。作为本发明的全多孔硅胶微球手性色谱填料的制备方法的进一步改进:所述步骤2),以3℃/min的速率升温至500℃后热处理10小时。作为本发明的全多孔硅胶微球手性色谱填料的制备方法的进一步改进:所述步骤1)中,四乙氧基硅烷与无水乙醇的质量比为5:8~12(较佳为1:2)。作为本发明的全多孔硅胶微球手性色谱填料的制备方法的进一步改进:所述步骤1)中,惰性气体为氩气。作为本发明的全多孔硅胶微球手性色谱填料的制备方法的进一步改进:所述步骤1)和步骤2)中,利用浓度为0.1g/ml盐酸溶液进行pH值的调节。作为本发明的全多孔硅胶微球手性色谱填料的制备方法的进一步改进:所述步骤2)和步骤3)中的干燥均为:于50~70℃(例如为60℃烘箱)干燥24~48小时。在本发明中,未明确限定温度的步骤均在室温下进行,室温是指10~30℃。本发明具有以下技术优势:(1)、本发明通过溶胶凝胶法制备全多孔硅胶微球填料,步骤简单,成本低廉。(2)、本发明方法制备的产物孔隙率较高,孔结构及粒度较为均匀。(3)、本发明采用的是改进TEOS水解的方法制备全多孔硅胶微球,利用致孔剂与水分子的结合来产生孔洞结构,制得的微球粒径孔径分布较窄,成球性较好。能成功对手性药物进行了分离。采用本方法制备的全多孔微球比表面积高达230m2·g-1,可作为手性高效液相色谱填料,对手性药物进行分离。综上所述,本发明制备了一种全多孔硅胶微球手性色谱填料;采用四乙氧基硅烷作为前驱体,盐酸作为催化剂(即在步骤1和步骤2中利用0.1g/ml盐酸溶液进行pH值的调节)、环己烷作为稳定剂以及聚乙二醇作为致孔剂。该方法制备工艺简单,制备的全多孔硅胶微球比表面积高并且孔隙均匀有序(孔隙/孔径为3~15nm),可应用于高效液相色谱分离领域。附图说明下面结合附图对本发明的具体实施方式作进一步详细说明。图1为实施例1制备的全多孔硅胶微球20000倍扫描电镜照片。图2为实施例1制备的全多孔硅胶微球50000倍扫描电镜照片。具体实施方式实施例1、一种全多孔硅胶微球手性色谱填料的制备方法,依次进行以下步骤:1)、将50g四乙氧基硅烷加入到100g无水乙醇中,30℃下在三颈烧瓶中搅拌30分钟,再加入作为稳定剂的环己烷1.5g、作为致孔剂的聚乙二醇(其分子量为400)7.5g,混合充分后加入0.1g/ml盐酸溶液使pH控制在2,继续搅拌60分钟后将温度升高到90℃,从而将无水乙醇蒸干,然后通入氩气,在氩气保护下继续保温(90℃)搅拌24小时,最后将温度升至140℃从而将剩余液态有机物蒸出,得到聚乙氧基硅烷;2)、将30g步骤1)的所得聚乙氧基硅烷与30g去离子水,60g无水乙醇充分混合,加入0.1g/ml盐酸控制溶液pH值在2,充分混合后在30℃环境下进行凝胶3小时,在40℃环境中陈化48小时后取出样品并使用酒精洗涤后,在60℃烘箱中干燥48小时,然后对其进行500℃的热处理10小时,得全多孔硅胶微球;3)、将步骤2)所得的全多孔硅胶微球在0.1g/ml盐酸中回流6次进行活化(每次回流的时间为1小时),并将样品在0.1g/ml直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)溶液中搅拌6小时,从而对其进行改性处理;最后于60℃烘箱中干燥48小时,得到全多孔硅胶微球手性色谱填料。上述所得的作为手性色谱填料的全多孔硅胶微球,所述微球外形为分散球形,颗粒粒径大小为4-7μm,比表面积为230m2/g,微球含有全贯通的纳米孔洞,孔径为5nm左右。实验1、采用实施例1制备而得的色谱填料对手性药物进行手性分离,具体分离步骤如下:将填料装柱,以0.5%异丙醇–正己烷溶液作为流动相,使用WelchromS60正相色谱仪对手性药物氟比洛芬酯进行液相色谱分离。所得结果为:氟比洛芬酯中含有的四种手性异构体得到里完全的分离。对比例1、将实施例1步骤1)中的环己烷改成丙酮,用量不变,其余等同于实施例1。对比例2、将实施例1步骤1)中的聚乙二醇改成Span80,用量不变,其余等同于实施例1。对比例3、将实施例1步骤1)和步骤2)的中“调节pH为2”改成“调节pH为5”,其余等同于实施例1。对比例4、将实施例1步骤2)中的热处理温度由500℃改为800℃,其余等同于实施例1。对比例5、将实施例1步骤2)中的陈化时间改为5小时,其余等同于实施例1。对比例6-1、将环己烷的用量由1.5g改成0.5g(即,环己烷与四乙氧基硅烷的重量比由3%改成1%);其余等同于实施例1。对比例6-2、将环己烷的用量由1.5g改成4g(即,环己烷与四乙氧基硅烷的重量比由3%改成8%);其余等同于实施例1。所有的对比例所得填料的性能数据如下表1所述。将上述所有的对比例按照上述实验1所述方法进行检测,所得结果如表1所述。表1备注说明:对比例1由于球形不好,因此无法进行后续的实验。最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。